Large-eddy simulation in a Sonolator high-pressure homogeniser

被引:4
作者
Bagkeris, Ioannis [1 ]
Michael, Vipin [1 ]
Prosser, Robert [1 ]
Kowalski, Adam [2 ]
机构
[1] Univ Manchester, Sch Mech Aerosp & Civil Engn, Manchester M13 9PL, Lancs, England
[2] Unilever R&D, Port Sunlight Lab, Quarry Rd East, Wirral CH63 3JW, Merseyside, England
基金
英国工程与自然科学研究理事会;
关键词
Large-eddy simulation; Elliptic jet; High-pressure homogeniser; Liquid whistle; Turbulence; ENERGY DISSIPATION RATE; INFLOW CONDITIONS; FLOW-FIELD; TURBULENCE; SPECTRUM; CAVITATION; BREAKUP; MODELS; REACTORS; SQUARE;
D O I
10.1016/j.ces.2019.115441
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This paper examines the fluid dynamics of a pilot-scale high-pressure homogeniser using large-eddy simulation. The mixer consists of a non-planar elliptic jet released into a confined cylindrical chamber. The simulated results are validated by comparing mean quantities with published experimental data. The evolution of the shear layers in the jet near-field shows a localised region of high turbulent energy dissipation rate in the major plane, whereas in the minor plane the dissipation rate is of smaller magnitude and spreads over a wider region. The validity of the turbulence isotropy assumption, typically made in dispersed-phase modelling, is examined. Energy spectra exhibit an amplification close to the nozzle at frequencies associated with vortex shedding. Kolmogorovs classical 2/3 scaling in the second-order structure functions is found to be overshadowed by vortex shedding, resulting in steeper slopes in the jet near-field, where the rate of energy dissipation assumes the largest value in the mixer. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:26
相关论文
共 50 条
[31]   Lattice Boltzmann method and large-eddy simulation for turbulent impinging jet cooling [J].
Yang, Yue-Tzu ;
Chang, Shing-Cheng ;
Chiou, Chu-Shiang .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 61 :543-553
[32]   A priori analysis for high-fidelity large-eddy simulation of wall-bounded transcritical turbulent flows [J].
Bernades, Marc ;
Jofre, Lluis ;
Capuano, Francesco .
JOURNAL OF SUPERCRITICAL FLUIDS, 2024, 207
[33]   A multilevel algorithm for large-eddy simulation of turbulent compressible flows [J].
Terracol, M ;
Sagaut, P ;
Basdevant, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 167 (02) :439-474
[34]   Large-eddy simulation of accelerated turbulent flow in a circular pipe [J].
Jung, Seo Yoon ;
Chung, Yongmann M. .
INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2012, 33 (01) :1-8
[35]   Large-eddy simulation of the flow in Z-Shape duct [J].
Karbon, Mohammed ;
Sleiti, Ahmad K. .
COGENT ENGINEERING, 2020, 7 (01)
[36]   Large-Eddy Simulation of Wind Turbine Wakes in Forest Terrain [J].
Li, Yunliang ;
Li, Zhaobin ;
Zhou, Zhideng ;
Yang, Xiaolei .
SUSTAINABILITY, 2023, 15 (06)
[37]   Interacting errors in large-eddy simulation: a review of recent developments [J].
Geurts, Bernard J. .
JOURNAL OF TURBULENCE, 2006, 7 (55) :1-16
[38]   Local Grid Refinement in Large-Eddy Simulation [J].
B.J. Boersma ;
M.N. Kooper ;
T.T.M. Nieuwstadt ;
P. Wesseling .
Journal of Engineering Mathematics, 1997, 32 :161-175
[39]   Large-eddy simulation of highly underexpanded transient gas jets [J].
Vuorinen, V. ;
Yu, J. ;
Tirunagari, S. ;
Kaario, O. ;
Larmi, M. ;
Duwig, C. ;
Boersma, B. J. .
PHYSICS OF FLUIDS, 2013, 25 (01)
[40]   Estimating the effective Reynolds number in implicit large-eddy simulation [J].
Zhou, Ye ;
Grinstein, Fernando F. ;
Wachtor, Adam J. ;
Haines, Brian M. .
PHYSICAL REVIEW E, 2014, 89 (01)