Statistical study for ITG turbulent transport in flux-driven tokamak plasmas based on global gyro-kinetic simulation

被引:20
作者
Wang, W. [1 ,2 ,3 ]
Kishimoto, Y. [2 ]
Imadera, K. [2 ]
Liu, H. R. [2 ]
Li, J. Q. [4 ]
Yagi, M. [3 ]
Wang, Z. X. [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China
[2] Kyoto Univ, Grad Sch Energy Sci, Uji, Kyoto 6110011, Japan
[3] Natl Inst Quantum & Radiol Sci & Technol, Rokkasho Fus Inst, Aomori 0393212, Japan
[4] Southwestern Inst Phys, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
ITG turbulence; transport burst; ExB staircase; flux-driven gyro-kinetic simulations; statistical analysis; self-organized profile; size probability distribution function; SELF-ORGANIZED CRITICALITY; CONFINEMENT; MODE; DYNAMICS; HEAT;
D O I
10.1088/1741-4326/ab7892
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Flux-driven ion temperature gradient (ITG) turbulence and associated transport regulated by non-local and non-diffusive processes are investigated based on GKNET simulations in a global toroidal geometry. Among these processes, the instantaneous formation of radially extended quasi-coherent structure, which leads to the transport burst, is found to play an important role in causing global profile formation and relaxation. To elucidate the characteristics of such a transport process, we introduce the size probability distribution function (size-PDF) P) (S to analyze heat flux eddies in the real space, with S the eddy size, incorporated with Fourier-based approaches in spectral space. In the size-PDF to the quiescent phase, P) (S is found to be fitted by three piecewise power laws which transitions at two typical sizes, SaSb, as P proportional to S-2/3 (S <= S-a), P proportional to S-2) (S-a <= S <= S-b, and P proportional to S-4) (S > S-b, where S-a similar to 50S(b)similar to 200 rho i2a/rho i similar to 225 (a: the minor radius). On the other hand, the size-PDF in the bursting phase exhibits non-power-law irregular humps which corresponds to the quasi-coherent structures for S > S-b S-max similar to 1500. Such a coherent structure is ascribed to the spontaneous alignment of smaller scale eddies through phase matching in radial direction, which is classified as a quasi-deterministic process. Resultantly, a large amount of free energy is extracted from the system due to subsequent growth of the event, by which a self-organized profile is established. The coherent structure is then readily disintegrated by self-generated zonal flows, followed by the energy transferred to smaller eddies. Finally, turbulent transport in the steady state of a flux-driven system is found to be regulated by the mixture of such quasi-deterministic process and probabilistic processes, which leads to stiffness and resilience in the profile formation and self-similarity in the relaxation.
引用
收藏
页数:24
相关论文
共 56 条
[1]   Statistical description of turbulent transport for flux driven toroidal plasmas [J].
Anderson, J. ;
Imadera, K. ;
Kishimoto, Y. ;
Li, J. Q. ;
Nordman, H. .
NUCLEAR FUSION, 2017, 57 (06)
[2]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[3]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[4]   Nondiffusive transport in tokamaks: Three-dimensional structure of bursts and the role of zonal flows [J].
Beyer, P ;
Benkadda, S ;
Garbet, X ;
Diamond, PH .
PHYSICAL REVIEW LETTERS, 2000, 85 (23) :4892-4895
[5]   Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz [J].
Bourdelle, C. ;
Citrin, J. ;
Baiocchi, B. ;
Casati, A. ;
Cottier, P. ;
Garbet, X. ;
Imbeaux, F. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (01)
[6]   Self-similarity properties of the probability distribution function of turbulence-induced particle fluxes at the plasma edge [J].
Carreras, BA ;
van Milligen, B ;
Hidalgo, C ;
Balbin, R ;
Sanchez, E ;
Garcia-Cortes, I ;
Pedrosa, MA ;
Bleuel, J ;
Endler, M .
PHYSICAL REVIEW LETTERS, 1999, 83 (18) :3653-3656
[7]   Anomalous diffusion and exit time distribution of particle tracers in plasma turbulence model [J].
Carreras, BA ;
Lynch, VE ;
Zaslavsky, GM .
PHYSICS OF PLASMAS, 2001, 8 (12) :5096-5103
[8]   Statistical analysis of disruptions in JET [J].
de Vries, P. C. ;
Johnson, M. F. ;
Segui, I. .
NUCLEAR FUSION, 2009, 49 (05)
[9]   The E x B staircase of magnetised plasmas [J].
Dif-Pradalier, G. ;
Hornung, G. ;
Garbet, X. ;
Ghendrih, Ph. ;
Grandgirard, V. ;
Latu, G. ;
Sarazin, Y. .
NUCLEAR FUSION, 2017, 57 (06)
[10]   Neoclassical physics in full distribution function gyrokinetics [J].
Dif-Pradalier, G. ;
Diamond, P. H. ;
Grandgirard, V. ;
Sarazin, Y. ;
Abiteboul, J. ;
Garbet, X. ;
Ghendrih, Ph. ;
Latu, G. ;
Strugarek, A. ;
Ku, S. ;
Chang, C. S. .
PHYSICS OF PLASMAS, 2011, 18 (06)