Hybrid machine learning in electrical impedance tomography

被引:0
作者
Rymarczyk, Tomasz [1 ,2 ,4 ]
Klosowski, Grzegorz [3 ]
Guzik, Miroslaw [1 ,4 ]
Niderla, Konrad [1 ,5 ]
Lipski, Jerzy [3 ]
机构
[1] Univ Econ & Innovat Lublin, Lublin, Poland
[2] Res & Dev Ctr Netrix SA, Lublin, Poland
[3] Lublin Univ Technol, Nadbystrzycka 38A, Lublin, Poland
[4] Univ Econ & Innovat, Projektowa 4, Lublin, Poland
[5] Lublin Univ Econ & Innovat, Projektowa 4, Lublin, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2021年 / 97卷 / 12期
关键词
electrical tomography; machine learning; industrial tomography;
D O I
10.15199/48.2021.12.35
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial intelligence plays an increasingly important role in industrial tomography. In industry, various types of tomography can be used, where one of the criteria for classification may be a physical phenomenon. Thus, it is possible to distinguish computed tomography, impedance tomography, ultrasound tomography, capacitance tomography, radio-tomographic imaging, and others. The research described in this paper focuses on the EIT method used to imaging reactors' interior and industrial vessels. Inside the tested reactor, there may be a liquid of various densities containing solid inclusions or gas bubbles. The presented research presents the concept of transforming measurements into tomographic images using many known, homogeneous methods simultaneously. It is assumed that there is no single method of solving the inverse problem for all possible measurement cases. Depending on the specifics of the studied case, various methods generate reconstructions that differ in terms of accuracy and resolution. The presented research proves that the proposed approach justifies the increase in computational complexity, ensuring higher quality of tomographic images.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
[31]   A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings [J].
Rymarczyk, Tomasz ;
Klosowski, Grzegorz ;
Kozlowski, Edward .
SENSORS, 2018, 18 (07)
[32]   Development of a Wearable Electrical Impedance Tomographic Sensor for Gesture Recognition With Machine Learning [J].
Yao, Jiafeng ;
Chen, Huaijin ;
Xu, Zifei ;
Huang, Jingshi ;
Li, Jianping ;
Jia, Jiabin ;
Wu, Hongtao .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (06) :1550-1556
[33]   Using machine learning algorithms to enhance the diagnostic performance of electrical impedance myography [J].
Pandeya, Sarbesh R. ;
Nagy, Janice A. ;
Riveros, Daniela ;
Semple, Carson ;
Taylor, Rebecca S. ;
Hu, Alice ;
Sanchez, Benjamin ;
Rutkove, Seward B. .
MUSCLE & NERVE, 2022, 66 (03) :354-361
[34]   Optimising the use of Machine learning algorithms in electrical tomography of building Walls: Pixel oriented ensemble approach [J].
Rymarczyk, Tomasz ;
Klosowski, Grzegorz ;
Hola, Anna ;
Sikora, Jan ;
Tchorzewski, Pawel ;
Skowron, Lukasz .
MEASUREMENT, 2022, 188
[35]   Characterization of Interfacial Failure in Cemented Total Joint Replacements via Self-Sensing Bone Cement, Electrical Impedance Tomography, and Machine Learning [J].
Ghaednia, H. ;
Owens, C. ;
Keiderling, L. E. ;
Hart, J. ;
Varadarajan, K. ;
Schwab, J. ;
Tallman, T. N. .
HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS XV, 2021, 11593
[36]   Optimal machine learning methods for prediction of high-flow nasal cannula outcomes using image features from electrical impedance tomography [J].
Yang, Lin ;
Li, Zhe ;
Dai, Meng ;
Fu, Feng ;
Moeller, Knut ;
Gao, Yuan ;
Zhao, Zhanqi .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 238
[37]   Non-invasive estimation of beat-by-beat aortic blood pressures from electrical impedance tomography data processed by machine learning [J].
Mueller-Graf, Fabian ;
Thoenes, Jacob P. ;
Krukewitt, Lisa ;
Frenkel, Paul ;
Richter, Henryk ;
Spors, Sascha ;
Kuehn, Volker ;
Zitzmann, Amelie R. ;
Boehm, Stephan H. ;
Reuter, Daniel A. .
JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2025,
[38]   Application of machine learning in electrical process tomography with variable frequency measurement sequences [J].
Klosowski, Grzegorz ;
Kulisz, Monika ;
Rymarczyk, Tomasz ;
Skowron, Lukasz ;
Olszewski, Pawel ;
Niderla, Konrad .
MEASUREMENT, 2025, 247
[39]   A Two-Stage Deep Learning Method for Robust Shape Reconstruction With Electrical Impedance Tomography [J].
Ren, Shangjie ;
Sun, Kai ;
Tan, Chao ;
Dong, Feng .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (07) :4887-4897
[40]   Electrical impedance guides electrode array in cochlear implantation using machine learning and robotic feeder [J].
Hafeez, Nauman ;
Du, Xinli ;
Boulgouris, Nikolaos ;
Begg, Philip ;
Irving, Richard ;
Coulson, Chris ;
Tourrel, Guillaume .
HEARING RESEARCH, 2021, 412