Hybrid machine learning in electrical impedance tomography

被引:0
作者
Rymarczyk, Tomasz [1 ,2 ,4 ]
Klosowski, Grzegorz [3 ]
Guzik, Miroslaw [1 ,4 ]
Niderla, Konrad [1 ,5 ]
Lipski, Jerzy [3 ]
机构
[1] Univ Econ & Innovat Lublin, Lublin, Poland
[2] Res & Dev Ctr Netrix SA, Lublin, Poland
[3] Lublin Univ Technol, Nadbystrzycka 38A, Lublin, Poland
[4] Univ Econ & Innovat, Projektowa 4, Lublin, Poland
[5] Lublin Univ Econ & Innovat, Projektowa 4, Lublin, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2021年 / 97卷 / 12期
关键词
electrical tomography; machine learning; industrial tomography;
D O I
10.15199/48.2021.12.35
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial intelligence plays an increasingly important role in industrial tomography. In industry, various types of tomography can be used, where one of the criteria for classification may be a physical phenomenon. Thus, it is possible to distinguish computed tomography, impedance tomography, ultrasound tomography, capacitance tomography, radio-tomographic imaging, and others. The research described in this paper focuses on the EIT method used to imaging reactors' interior and industrial vessels. Inside the tested reactor, there may be a liquid of various densities containing solid inclusions or gas bubbles. The presented research presents the concept of transforming measurements into tomographic images using many known, homogeneous methods simultaneously. It is assumed that there is no single method of solving the inverse problem for all possible measurement cases. Depending on the specifics of the studied case, various methods generate reconstructions that differ in terms of accuracy and resolution. The presented research proves that the proposed approach justifies the increase in computational complexity, ensuring higher quality of tomographic images.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [21] Using an LSTM network to monitor industrial reactors using electrical capacitance and impedance tomography - a hybrid approach
    Klosowski, Grzegorz
    Rymarczyk, Tomasz
    Niderla, Konrad
    Kulisz, Monika
    Skowron, Lukasz
    Soleimani, Manuchehr
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2023, 25 (01):
  • [22] Using Machine Learning in Electrical Tomography for Building Energy Efficiency through Moisture Detection
    Klosowski, Grzegorz
    Hola, Anna
    Rymarczyk, Tomasz
    Mazurek, Mariusz
    Niderla, Konrad
    Rzemieniak, Magdalena
    ENERGIES, 2023, 16 (04)
  • [23] Machine learning estimation of an arterial pressure model using electrical impedance
    Augusto Romero-Beltran, Cesar
    Murillo Riascos, Yan Carlos
    Mauricio Gonzalez-Vargas, Andres
    Jairo Cabrera-Lopez, John
    2022 IEEE COLOMBIAN CONFERENCE ON APPLICATIONS OF COMPUTATIONAL INTELLIGENCE (COLCACI 2022), 2022,
  • [24] Predicting the Electrical Impedance of Rolling Bearings Using Machine Learning Methods
    Kirchner, Eckhard
    Bienefeld, Christoph
    Schirra, Tobias
    Moltschanov, Alexander
    MACHINES, 2022, 10 (02)
  • [25] Classification of Wood Chips Using Electrical Impedance Spectroscopy and Machine Learning
    Tiitta, Markku
    Tiitta, Valtteri
    Heikkinen, Jorma
    Lappalainen, Reijo
    Tomppo, Laura
    SENSORS, 2020, 20 (04)
  • [26] Electrical Impedance Spectroscopy Based Preterm Birth Prediction with Machine Learning
    Wang, Mengxiao
    Lang, Zi-Qiang
    Zhang, Di
    Anumba, D. O. C.
    ARTIFICIAL INTELLIGENCE IN HEALTHCARE, PT I, AIIH 2024, 2024, 14975 : 85 - 97
  • [27] Electrical test prediction using hybrid metrology and machine learning
    Breton, Mary
    Chao, Robin
    Muthinti, Gangadhara Raja
    de la Pena, Abraham A.
    Simon, Jacques
    Cepler, Aron J.
    Sendelbach, Matthew
    Gaudiello, John
    Tang, Hao
    Emans, Susan
    Shifrin, Michael
    Etzioni, Yoav
    Urenski, Ronen
    Lee, Wei Ti
    METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XXXI, 2017, 10145
  • [28] Application of Electrical Tomography Imaging Using Machine Learning Methods for the Monitoring of Flood Embankments Leaks
    Rymarczyk, Tomasz
    Krol, Krzysztof
    Kozlowski, Edward
    Wolowiec, Tomasz
    Cholewa-Wiktor, Marta
    Bednarczuk, Piotr
    ENERGIES, 2021, 14 (23)
  • [29] A Non-Destructive System Based on Electrical Tomography and Machine Learning to Analyze the Moisture of Buildings
    Rymarczyk, Tomasz
    Klosowski, Grzegorz
    Kozlowski, Edward
    SENSORS, 2018, 18 (07)
  • [30] Application of Machine Learning Algorithms to the Discretization Problem in Wearable Electrical Tomography Imaging for Bladder Tracking
    Baran, Bartlomiej
    Kozlowski, Edward
    Majerek, Dariusz
    Rymarczyk, Tomasz
    Soleimani, Manuchehr
    Wojcik, Dariusz
    SENSORS, 2023, 23 (03)