Hybrid machine learning in electrical impedance tomography

被引:0
|
作者
Rymarczyk, Tomasz [1 ,2 ,4 ]
Klosowski, Grzegorz [3 ]
Guzik, Miroslaw [1 ,4 ]
Niderla, Konrad [1 ,5 ]
Lipski, Jerzy [3 ]
机构
[1] Univ Econ & Innovat Lublin, Lublin, Poland
[2] Res & Dev Ctr Netrix SA, Lublin, Poland
[3] Lublin Univ Technol, Nadbystrzycka 38A, Lublin, Poland
[4] Univ Econ & Innovat, Projektowa 4, Lublin, Poland
[5] Lublin Univ Econ & Innovat, Projektowa 4, Lublin, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2021年 / 97卷 / 12期
关键词
electrical tomography; machine learning; industrial tomography;
D O I
10.15199/48.2021.12.35
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial intelligence plays an increasingly important role in industrial tomography. In industry, various types of tomography can be used, where one of the criteria for classification may be a physical phenomenon. Thus, it is possible to distinguish computed tomography, impedance tomography, ultrasound tomography, capacitance tomography, radio-tomographic imaging, and others. The research described in this paper focuses on the EIT method used to imaging reactors' interior and industrial vessels. Inside the tested reactor, there may be a liquid of various densities containing solid inclusions or gas bubbles. The presented research presents the concept of transforming measurements into tomographic images using many known, homogeneous methods simultaneously. It is assumed that there is no single method of solving the inverse problem for all possible measurement cases. Depending on the specifics of the studied case, various methods generate reconstructions that differ in terms of accuracy and resolution. The presented research proves that the proposed approach justifies the increase in computational complexity, ensuring higher quality of tomographic images.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [1] Classification of Electrical Impedance Tomography Data Using Machine Learning
    Pessoa, Diogo
    Rocha, Bruno Machado
    Cheimariotis, Grigorios-Aris
    Haris, Kostas
    Strodthoff, Claas
    Kaimakamis, Evangelos
    Maglaveras, Nicos
    Frerichs, Inez
    de Carvalho, Paulo
    Paiva, Rui Pedro
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 349 - 353
  • [2] Piezoresistive nanocomposite sensing using electrical impedance tomography and machine learning
    Alawy, A.
    Mostaghimi, H.
    Amani, S.
    Rezvani, S.
    Park, S. S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2024, 377
  • [3] A comparative study of selected machine learning algorithms for electrical impedance tomography
    Dziadosz, Marcin
    Mazurek, Mariusz
    Stefaniak, Barbara
    Wojcik, Dariusz
    Gauda, Konrad
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (04): : 237 - 240
  • [4] Ensemble learning for monitoring process in electrical impedance tomography
    Klosowski, Grzegorz
    Rymarczyk, Tomasz
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2022, 69 (02) : 169 - 178
  • [5] Finite element modeling of the electrical impedance tomography technique driven by machine learning
    Elkhodbia, Mohamed
    Barsoum, Imad
    Korkees, Feras
    Bojanampati, Shrinivas
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2023, 223
  • [6] Machine learning enhanced electrical impedance tomography for 2D materials
    Coxson, Adam
    Mihov, Ivo
    Wang, Ziwei
    Avramov, Vasil
    Barnes, Frederik Brooke
    Slizovskiy, Sergey
    Mullan, Ciaran
    Timokhin, Ivan
    Sanderson, David
    Kretinin, Andrey
    Yang, Qian
    Lionheart, William R. B.
    Mishchenko, Artem
    INVERSE PROBLEMS, 2022, 38 (08)
  • [7] Object Analysis Using Machine Learning to Solve Inverse Problem in Electrical Impedance Tomography
    Rymarczyk, Tomasz
    Kozlowski, Edward
    Klosowski, Grzegorz
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 220 - 225
  • [8] Machine learning-directed electrical impedance tomography to predict metabolically vulnerable plaques
    Chen, Justin
    Wang, Shaolei
    Wang, Kaidong
    Abiri, Parinaz
    Huang, Zi-Yu
    Yin, Junyi
    Jabalera, Alejandro M.
    Arianpour, Brian
    Roustaei, Mehrdad
    Zhu, Enbo
    Zhao, Peng
    Cavallero, Susana
    Duarte-Vogel, Sandra
    Stark, Elena
    Luo, Yuan
    Benharash, Peyman
    Tai, Yu-Chong
    Cui, Qingyu
    Hsiai, Tzung K.
    BIOENGINEERING & TRANSLATIONAL MEDICINE, 2024, 9 (01)
  • [9] Comparison of Machine Learning Classifiers for the Detection of Breast Cancer in an Electrical Impedance Tomography Setup
    Rixen, Joeran
    Blass, Nico
    Lyra, Simon
    Leonhardt, Steffen
    ALGORITHMS, 2023, 16 (11)
  • [10] Machine Learning Approaches to Estimate Simulated Cardiac Ejection Fraction from Electrical Impedance Tomography
    Fonseca, Tales L.
    Goliatt, Leonardo
    Campos, Luciana C. D.
    Bastos, Flavia S.
    Barra, Luis Paulo S.
    dos Santos, Rodrigo W.
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2016, 2016, 10022 : 235 - 246