A CATEGORICAL sl2 ACTION ON SOME MODULI SPACES OF SHEAVES

被引:2
|
作者
Takahashi, Ryan [1 ]
Addington, Nicolas [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
COHERENT SHEAVES; K3; DUALITY; ALGEBRA; SCHEME;
D O I
10.1090/tran/8779
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study certain sequences of moduli spaces of sheaves on K3 surfaces, building on work of Markman [J. Algebraic Geom. 10 (2001), pp. 623-694], Yoshioka [J. Reine Angew.Math. 515 (1999), pp. 97-123], and Nakajima [Convolution on homology groups of moduli spaces of sheaves on K3 surfaces, Contemp. Math., vol. 322, Amer. Math. Soc., Providence, RI, 2003, pp. 75-87]. We show that these sequences can be given the structure of a geometric categorical sl2 action in the sense of Cautis, Kamnitzer, and Licata. As a corollary, we get an equivalence between derived categories of some moduli spaces that are birational via stratified Mukai flops.
引用
收藏
页码:8969 / 9005
页数:37
相关论文
共 37 条