Variational State and Parameter Estimation

被引:6
|
作者
Courts, Jarrad [1 ]
Hendriks, Johannes [1 ]
Wills, Adrian [1 ]
Schon, Thomas B. [2 ]
Ninness, Brett [1 ]
机构
[1] Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
[2] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
基金
瑞典研究理事会;
关键词
Bayesian inference; system identification; variational inference; nonlinear models; parameter estimation;
D O I
10.1016/j.ifacol.2021.08.448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of computing Bayesian estimates of both states and model parameters for nonlinear state-space models. Generally, this problem does not have a tractable solution and approximations must be utilised. In this work, a variational approach is used to provide an assumed density which approximates the desired, intractable, distribution. The approach is deterministic and results in an optimisation problem of a standard form. Due to the parametrisation of the assumed density selected first- and second-order derivatives are readily available which allows for efficient solutions. The proposed method is compared against state-of-the-art Hamiltonian Monte Carlo in two numerical examples. Copyright (C) 2021 The Authors.
引用
收藏
页码:732 / 737
页数:6
相关论文
共 50 条
  • [41] A Rao-Blackwellized Particle Filter With Variational Inference for State Estimation With Measurement Model Uncertainties
    Cheng, Cheng
    Tourneret, Jean-Yves
    Lu, Xiaodong
    IEEE ACCESS, 2020, 8 : 55665 - 55675
  • [42] Joint Estimation of State and Parameter With Synchrophasors-Part II: Parameter Tracking
    Bian, Xiaomeng
    Li, X. Rong
    Chen, Huimin
    Gan, Deqiang
    Qiu, Jiaju
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2011, 26 (03) : 1209 - 1220
  • [43] State and parameter estimation in chemical and biochemical processes: a tutorial
    Dochain, D
    JOURNAL OF PROCESS CONTROL, 2003, 13 (08) : 801 - 818
  • [44] Observer design for state and parameter estimation in a landslide model
    Mishra, Mohit
    Besancon, Gildas
    Chambon, Guillaume
    Baillet, Laurent
    IFAC PAPERSONLINE, 2020, 53 (02): : 16709 - 16714
  • [45] JOINT STATE AND PARAMETER ESTIMATION FOR BOOLEAN DYNAMICAL SYSTEMS
    Braga-Neto, Ulisses
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 704 - 707
  • [46] A Decentralized Framework for Parameter and State Estimation of Infiltration Processes
    Bo, Song
    Liu, Jinfeng
    MATHEMATICS, 2020, 8 (05)
  • [47] Integrated state and parameter estimation for vehicle dynamics control
    Singh K.B.
    Taheri S.
    2019, 5 (04): : 329 - 376
  • [48] Comparison of parameter and state estimation based FDI algorithms
    Jiang, J
    Zhao, Q
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 627 - 632
  • [49] A parameter estimation approach to state observation of nonlinear systems
    Ortega, Romeo
    Bobtsov, Alexey
    Pyrkin, Anton
    Aranovskiy, Stanislav
    SYSTEMS & CONTROL LETTERS, 2015, 85 : 84 - 94
  • [50] Particle Filter for State and Parameter Estimation in Passive Ranging
    Wang Wan-ping
    Liao Sheng
    Xing Ting-wen
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 3, 2009, : 257 - 261