Variational State and Parameter Estimation

被引:6
|
作者
Courts, Jarrad [1 ]
Hendriks, Johannes [1 ]
Wills, Adrian [1 ]
Schon, Thomas B. [2 ]
Ninness, Brett [1 ]
机构
[1] Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
[2] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 07期
基金
瑞典研究理事会;
关键词
Bayesian inference; system identification; variational inference; nonlinear models; parameter estimation;
D O I
10.1016/j.ifacol.2021.08.448
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the problem of computing Bayesian estimates of both states and model parameters for nonlinear state-space models. Generally, this problem does not have a tractable solution and approximations must be utilised. In this work, a variational approach is used to provide an assumed density which approximates the desired, intractable, distribution. The approach is deterministic and results in an optimisation problem of a standard form. Due to the parametrisation of the assumed density selected first- and second-order derivatives are readily available which allows for efficient solutions. The proposed method is compared against state-of-the-art Hamiltonian Monte Carlo in two numerical examples. Copyright (C) 2021 The Authors.
引用
收藏
页码:732 / 737
页数:6
相关论文
共 50 条
  • [31] State and parameter estimation for a class of schistosomiasis models
    Bichara, Derdei M.
    Guiro, Aboudramane
    Iggidr, Abderrahman
    Ngom, Diene
    MATHEMATICAL BIOSCIENCES, 2019, 315
  • [32] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [33] Variational inference as iterative projection in a Bayesian Hilbert space with application to robotic state estimation
    Barfoot, Timothy D.
    D'Eleuterio, Gabriele M. T.
    ROBOTICA, 2023, 41 (02) : 632 - 667
  • [34] Finite-time simultaneous parameter and state estimation using modulating functions
    Jouffroy, Jerome
    Reger, Johann
    2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 394 - 399
  • [35] SHAPE PARAMETER ESTIMATION FOR K-DISTRIBUTION USING VARIATIONAL BAYESIAN APPROACH
    Turlapaty, Anish C.
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 243 - 247
  • [36] Modal parameter estimation of civil structures based on improved variational mode decomposition
    Zhi, Lun-hai
    Hu, Feng
    Zhao, Chunfeng
    Wang, Jingfeng
    STRUCTURAL ENGINEERING AND MECHANICS, 2021, 79 (06) : 683 - 697
  • [37] VARIATIONAL PARAMETER-ESTIMATION FOR A 2-DIMENSIONAL NUMERICAL TIDAL MODEL
    DAS, SK
    LARDNER, RW
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 15 (03) : 313 - 327
  • [38] Parameter and State Estimation for Uncertain Linear Systems by Output Estimation Error
    Muramatsu, Eiichi
    Ikeda, Masao
    2016 55TH ANNUAL CONFERENCE OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS OF JAPAN (SICE), 2016, : 190 - 195
  • [39] PARAMETER ERROR IDENTIFICATION AND ESTIMATION IN POWER-SYSTEM STATE ESTIMATION
    LIU, WHE
    LIM, SL
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1995, 10 (01) : 200 - 209
  • [40] State filtering and parameter estimation for state space systems with scarce measurements
    Ding, Feng
    SIGNAL PROCESSING, 2014, 104 : 369 - 380