机构:
Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, AustraliaUniv Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
Courts, Jarrad
[1
]
Hendriks, Johannes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, AustraliaUniv Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
Hendriks, Johannes
[1
]
Wills, Adrian
论文数: 0引用数: 0
h-index: 0
机构:
Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, AustraliaUniv Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
Wills, Adrian
[1
]
Schon, Thomas B.
论文数: 0引用数: 0
h-index: 0
机构:
Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, SwedenUniv Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
Schon, Thomas B.
[2
]
论文数: 引用数:
h-index:
机构:
Ninness, Brett
[1
]
机构:
[1] Univ Newcastle, Fac Engn & Built Environm, Sch Engn, Callaghan, NSW 2308, Australia
[2] Uppsala Univ, Dept Informat Technol, S-75105 Uppsala, Sweden
来源:
IFAC PAPERSONLINE
|
2021年
/
54卷
/
07期
基金:
瑞典研究理事会;
关键词:
Bayesian inference;
system identification;
variational inference;
nonlinear models;
parameter estimation;
D O I:
10.1016/j.ifacol.2021.08.448
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This paper considers the problem of computing Bayesian estimates of both states and model parameters for nonlinear state-space models. Generally, this problem does not have a tractable solution and approximations must be utilised. In this work, a variational approach is used to provide an assumed density which approximates the desired, intractable, distribution. The approach is deterministic and results in an optimisation problem of a standard form. Due to the parametrisation of the assumed density selected first- and second-order derivatives are readily available which allows for efficient solutions. The proposed method is compared against state-of-the-art Hamiltonian Monte Carlo in two numerical examples. Copyright (C) 2021 The Authors.