Mobility-based SIR model for complex networks: with case study Of COVID-19

被引:18
作者
Goel, Rahul [1 ]
Bonnetain, Loic [2 ]
Sharma, Rajesh [1 ]
Furno, Angelo [2 ]
机构
[1] Univ Tartu, Inst Comp Sci, Tartu, Estonia
[2] Univ Lyon, Univ Gustave Eiffel, ENTPE, LICIT UMR T9401, Lyon, France
基金
欧盟地平线“2020”;
关键词
COVID-19; Epidemic based modeling; SIR; Mobility; Complex networks; Call data records; Estonia; Rhone-Alpes; EPIDEMIC OUTBREAKS;
D O I
10.1007/s13278-021-00814-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the last decade, humanity has faced many different pandemics such as SARS, H1N1, and presently novel coronavirus (COVID-19). On one side, scientists have developed vaccinations, and on the other side, there is a need to propose models that can help in understanding the spread of these pandemics as it can help governmental and other concerned agencies to be well prepared, especially for pandemics, which spreads faster like COVID-19. The main reason for some epidemic turning into pandemics is the connectivity among different regions of the world, which makes it easier to affect a wider geographical area, often worldwide. Also, the population distribution and social coherence in the different regions of the world are non-uniform. Thus, once the epidemic enters a region, then the local population distribution plays an important role. Inspired by these ideas, we propose two versions of our mobility-based SIR model, (i) fully mixed and (ii) for complex networks, which especially takes into account real-life interactions. To the best of our knowledge, this model is the first of its kind, which takes into account the population distribution, connectivity of different geographic locations across the globe, and individuals' network connectivity information. In addition to presenting the mathematical proof of our models, we have performed extensive simulations using synthetic data to demonstrate the generalization capability of our models. Finally, to demonstrate the wider scope of our model, we applied our model to forecast the COVID-19 cases at county level (Estonia) and regional level (Rhone-Alpes region in France).
引用
收藏
页数:18
相关论文
共 49 条
[41]   An SIS model with infective medium on complex networks [J].
Shi, Hongjing ;
Duan, Zhisheng ;
Chen, Guanrong .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (8-9) :2133-2144
[42]  
Singh A, ARXIV12086063
[43]  
Sun R., 2006, COGNITION MULTIAGENT
[44]   Antiviral treatment for pandemic influenza: Assessing potential repercussions using a seasonally forced SIR model [J].
Towers, S. ;
Vogt Geisse, K. ;
Zheng, Y. ;
Feng, Z. .
JOURNAL OF THEORETICAL BIOLOGY, 2011, 289 :259-268
[45]  
Tuomisto J.T., 2020, AGENT BASED EPIDEMIC
[46]   Modelling dynamical processes in complex socio-technical systems [J].
Vespignani, Alessandro .
NATURE PHYSICS, 2012, 8 (01) :32-39
[47]   A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks [J].
Viboud, Cecile ;
Simonsen, Lone ;
Chowell, Gerardo .
EPIDEMICS, 2016, 15 :27-37
[48]   Weighted hypersoft configuration model [J].
Voitalov, Ivan ;
van der Hoorn, Pim ;
Kitsak, Maksim ;
Papadopoulos, Fragkiskos ;
Krioukov, Dmitri .
PHYSICAL REVIEW RESEARCH, 2020, 2 (04)
[49]   An SIR model with infection delay and propagation vector in complex networks [J].
Xia, Chengyi ;
Wang, Li ;
Sun, Shiwen ;
Wang, Juan .
NONLINEAR DYNAMICS, 2012, 69 (03) :927-934