Topographic wiring of the retinotectal connection in zebrafish

被引:27
作者
Kita, Elizabeth M. [1 ]
Scott, Ethan K. [2 ]
Goodhill, Geoffrey J. [1 ,3 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Biomed Sci, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
英国医学研究理事会;
关键词
zebrafish; retinotectal map; tectum; RGC; development; VISUAL-SYSTEM DEVELOPMENT; RETINAL GANGLION-CELLS; RETINOTOPIC MAP DEVELOPMENT; NEURAL-IMPULSE BLOCKADE; IN-VIVO; AXON GUIDANCE; OPTIC TECTUM; LARVAL ZEBRAFISH; DANIO-RERIO; DEVELOPMENTAL REGULATION;
D O I
10.1002/dneu.22256
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The zebrafish retinotectal projection provides an attractive model system for studying many aspects of topographic map formation and maintenance. Visual connections initially start to form between 3 and 5 days postfertilization, and remain plastic throughout the life of the fish. Zebrafish are easily manipulated surgically, genetically, and chemically, and a variety of molecular tools exist to enable visualization and control of various aspects of map development. Here, we review zebrafish retinotectal map formation, focusing particularly on the detailed structure and dynamics of the connections, the molecules that are important in map creation, and how activity regulates the maintenance of the map. (c) 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 542-556, 2015
引用
收藏
页码:542 / 556
页数:15
相关论文
共 133 条
[61]  
Karlstrom RO, 1996, DEVELOPMENT, V123, P427
[62]   A Role for Correlated Spontaneous Activity in the Assembly of Neural Circuits [J].
Kirkby, Lowry A. ;
Sack, Georgeann S. ;
Firl, Alana ;
Feller, Marla B. .
NEURON, 2013, 80 (05) :1129-1144
[63]  
Kita EM, 2015, INFLUENCE ACTIVITY A, DOI [10.1002/dneu.22262, DOI 10.1002/DNEU.22262]
[64]   Ephrin signalling in the developing nervous system [J].
Klein, Ruediger ;
Kania, Artur .
CURRENT OPINION IN NEUROBIOLOGY, 2014, 27 :16-24
[65]   Instructed learning in the auditory localization pathway of the barn owl [J].
Knudsen, EI .
NATURE, 2002, 417 (6886) :322-328
[66]   Retinotectal mapping: New insights from molecular genetics [J].
Lemke, G ;
Reber, M .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2005, 21 :551-580
[67]   Arachidonic acid as a retrograde signal controlling growth and dynamics of retinotectal arbors [J].
Leu, B. H. ;
Schmidt, J. T. .
DEVELOPMENTAL NEUROBIOLOGY, 2008, 68 (01) :18-30
[68]   GAP43 Phosphorylation Is Critical for Growth and Branching of Retinotectal Arbors in Zebrafish [J].
Leu, Byunghee ;
Koch, Eric ;
Schmidt, John T. .
DEVELOPMENTAL NEUROBIOLOGY, 2010, 70 (13) :897-911
[69]   Eph Receptor Signaling and Ephrins [J].
Lisabeth, Erika M. ;
Falivelli, Giulia ;
Pasquale, Elena B. .
COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2013, 5 (09)
[70]   Semaphorin3D guides retinal axons along the dorsoventral axis of the tectum [J].
Liu, Y ;
Berndt, J ;
Su, FY ;
Tawarayama, H ;
Shoji, W ;
Kuwada, JY ;
Halloran, MC .
JOURNAL OF NEUROSCIENCE, 2004, 24 (02) :310-318