Topographic wiring of the retinotectal connection in zebrafish

被引:27
作者
Kita, Elizabeth M. [1 ]
Scott, Ethan K. [2 ]
Goodhill, Geoffrey J. [1 ,3 ]
机构
[1] Univ Queensland, Queensland Brain Inst, Brisbane, Qld 4072, Australia
[2] Univ Queensland, Sch Biomed Sci, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
英国医学研究理事会;
关键词
zebrafish; retinotectal map; tectum; RGC; development; VISUAL-SYSTEM DEVELOPMENT; RETINAL GANGLION-CELLS; RETINOTOPIC MAP DEVELOPMENT; NEURAL-IMPULSE BLOCKADE; IN-VIVO; AXON GUIDANCE; OPTIC TECTUM; LARVAL ZEBRAFISH; DANIO-RERIO; DEVELOPMENTAL REGULATION;
D O I
10.1002/dneu.22256
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The zebrafish retinotectal projection provides an attractive model system for studying many aspects of topographic map formation and maintenance. Visual connections initially start to form between 3 and 5 days postfertilization, and remain plastic throughout the life of the fish. Zebrafish are easily manipulated surgically, genetically, and chemically, and a variety of molecular tools exist to enable visualization and control of various aspects of map development. Here, we review zebrafish retinotectal map formation, focusing particularly on the detailed structure and dynamics of the connections, the molecules that are important in map creation, and how activity regulates the maintenance of the map. (c) 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 542-556, 2015
引用
收藏
页码:542 / 556
页数:15
相关论文
共 133 条
[41]   Retinotopic order in the absence of axon competition [J].
Gosse, Nathan J. ;
Nevin, Linda M. ;
Baier, Herwig .
NATURE, 2008, 452 (7189) :892-U9
[42]   An essential role for Radar (Gdf6a) in inducing dorsal fate in the zebrafish retina [J].
Gosse, Nathan J. ;
Baier, Herwig .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (07) :2236-2241
[43]  
Granato M, 1996, DEVELOPMENT, V123, P399
[44]   Timeline - Headwaters of the zebrafish emergence of a new model vertebrate [J].
Grunwald, DJ ;
Eisen, JS .
NATURE REVIEWS GENETICS, 2002, 3 (09) :717-724
[45]   Cerebellar output in zebrafish: an analysis of spatial patterns and topography in eurydendroid cell projections [J].
Heap, Lucy A. ;
Goh, Chi Ching ;
Kassahn, Karin S. ;
Scott, Ethan K. .
FRONTIERS IN NEURAL CIRCUITS, 2013, 7
[46]  
HERZOG KH, 1994, DEVELOPMENT, V120, P1643
[47]   Quantitative assessment of computational models for retinotopic map formation [J].
Hjorth, J. J. Johannes ;
Sterratt, David C. ;
Cutts, Catherine S. ;
Willshaw, David J. ;
Eglen, Stephen J. .
DEVELOPMENTAL NEUROBIOLOGY, 2015, 75 (06) :641-666
[48]   RNA-Binding Protein Hermes/RBPMS Inversely Affects Synapse Density and Axon Arbor Formation in Retinal Ganglion Cells In Vivo [J].
Hoernberg, Hanna ;
Wollerton-van Horck, Francis ;
Maurus, Daniel ;
Zwart, Maarten ;
Svoboda, Hanno ;
Harris, William A. ;
Holt, Christine E. .
JOURNAL OF NEUROSCIENCE, 2013, 33 (25) :10384-10395
[49]  
HORDER TJ, 1971, J PHYSIOL-LONDON, V216, pP53
[50]   Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish [J].
Hruscha, Alexander ;
Krawitz, Peter ;
Rechenberg, Alexandra ;
Heinrich, Verena ;
Hecht, Jochen ;
Haass, Christian ;
Schmid, Bettina .
DEVELOPMENT, 2013, 140 (24) :4982-4987