Decay of correlations in one-dimensional dynamics

被引:65
作者
Bruin, H
Luzzatto, S
Van Strien, S
机构
[1] Univ Groningen, Dept Math, NL-9700 AV Groningen, Netherlands
[2] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7, England
[3] Univ Warwick, Dept Math, Coventry CV4 7AL, W Midlands, England
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2003年 / 36卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1016/S0012-9593(03)00025-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider multimodal C-3 interval maps f satisfying a summability condition on the derivatives D-n along the critical orbits which implies the existence of an absolutely continuous f-invariant probability measure mu. If f is non-renormalizable, mu is mixing and we show that the speed of mixing (decay of correlations) is strongly related to the rate of growth of the sequence (D-n) as n --> infinity. We also give sufficient conditions for mu to satisfy the Central Limit Theorem. This applies for example to the quadratic Fibonacci map which is shown to have subexponential decay of correlations. (C) 2003 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:621 / 646
页数:26
相关论文
共 33 条