Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms

被引:116
|
作者
Saavedra-Moreno, B. [1 ]
Salcedo-Sanz, S. [1 ]
Paniagua-Tineo, A. [1 ]
Prieto, L. [2 ]
Portilla-Figueras, A. [1 ]
机构
[1] Univ Alcala de Henares, Dept Signal Theory & Commun, Madrid 28871, Spain
[2] Iberdrola Renovables, Wind Resource Dept, Madrid, Spain
关键词
Wind farm design; Turbines location; Evolutionary algorithms; Heuristics; PLACEMENT; LAYOUT; OPTIMIZATION;
D O I
10.1016/j.renene.2011.04.018
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper a novel evolutionary algorithm for optimal positioning of wind turbines in wind farms is proposed. A realistic model for the wind farm is considered in the optimization process, which includes orography, shape of the wind farm, simulation of the wind speed and direction, and costs of installation, connection and road construction among wind turbines. Regarding the solution of the problem, this paper introduces a greedy heuristic algorithm which is able to obtain a reasonable initial solution for the problem. This heuristic is then used to seed the initial population of the evolutionary algorithm, improving its performance. It is shown that the proposed seeded evolutionary approach is able to obtain very good solutions to this problem, which maximize the economical benefit which can be obtained from the wind farm. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2838 / 2844
页数:7
相关论文
共 50 条
  • [1] Optimal positioning of wind turbines in a geographically defined wind park using memetic algorithms
    Petikas, Isidoros
    Fountas, Chrysostomos
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2010, 13 (05): : 1003 - 1015
  • [2] The loading of wind turbines in wind farms
    Quarton, DC
    WIND ENERGY CONVERSION 1996, 1997, : 443 - 448
  • [3] Consolidity Analysis of Wind Turbines in Wind Farms
    Mohammed, Ibrahim R.
    Saleh, Amr A.
    Saleh, Ahmad M.
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2020, 10 (01): : 205 - 216
  • [4] Optimizing the Distribution of Wind Turbines in Wind Farms
    Durante-Gomez, W.
    Iracheta-Cortez, R.
    Lopez-Molina, F.
    Vidal-Pavon, G.
    Zaragoza-Antonio, S.
    Dorrego-Portela, J. R.
    Torres-Moreno, E.
    2018 IEEE 38TH CENTRAL AMERICA AND PANAMA CONVENTION (CONCAPAN XXXVIII), 2018, : 50 - 56
  • [5] The Application of Water Cycle Optimization Algorithm for Optimal Placement of Wind Turbines in Wind Farms
    Rezk, Hegazy
    Fathy, Ahmed
    Diab, Ahmed A. Zaki
    Al-Dhaifallah, Mujahed
    ENERGIES, 2019, 12 (22)
  • [6] Optimal Wind Turbines Micrositing in Onshore Wind Farms Using Fuzzy Genetic Algorithm
    Yang, Jun
    Zhang, Rui
    Sun, Qiuye
    Zhang, Huaguang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [7] Efficient Hybrid Distributed Genetic Algorithms for Wind Turbine Positioning in Large Wind Farms
    Huang, Hou-Sheng
    ISIE: 2009 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS, 2009, : 2162 - 2167
  • [8] Wind farms dispatching to manage the activation of frequency support algorithms embedded in connected wind turbines
    Attya, A. B.
    Hartkopf, T.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2013, 53 : 923 - 936
  • [9] A Tutorial on the Dynamics and Control of Wind Turbines and Wind Farms
    Pao, Lucy Y.
    Johnson, Kathryn E.
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 2076 - +
  • [10] Modeling and Advanced Control of Wind Turbines/Wind Farms
    Hu, J.
    Hou, Y.
    Zhu, Z.
    Xu, D.
    Xu, D.
    Muljadi, E.
    Liu, F.
    Iwanski, G.
    Geng, H.
    Erlich, I.
    Wen, J.
    Harnefors, L.
    Fan, L.
    El Moursi, M. S.
    Kjaer, P. C.
    Nelson, R. J.
    Cardenas, R.
    Feng, S.
    Islam, S.
    Qiao, W.
    Yuan, X.
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2017, 32 (03) : 1105 - 1107