A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction-Diffusion Equations on Surfaces

被引:131
作者
Shankar, Varun [1 ]
Wright, Grady B. [2 ]
Kirby, Robert M. [3 ]
Fogelson, Aaron L. [1 ]
机构
[1] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[2] Boise State Univ, Dept Math, Boise, ID 83725 USA
[3] Univ Utah, Sch Comp, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
Radial basis functions; Finite differences; Mesh-free; Manifolds; RBF-FD; Method-of-lines; Reaction-diffusion; MULTIVARIATE INTERPOLATION; STABLE COMPUTATION; STENCILS;
D O I
10.1007/s10915-014-9914-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a method based on radial basis function (RBF)-generated finite differences (FD) for numerically solving diffusion and reaction-diffusion equations (PDEs) on closed surfaces embedded in . Our method uses a method-of-lines formulation, in which surface derivatives that appear in the PDEs are approximated locally using RBF interpolation. The method requires only scattered nodes representing the surface and normal vectors at those scattered nodes. All computations use only extrinsic coordinates, thereby avoiding coordinate distortions and singularities. We also present an optimization procedure that allows for the stabilization of the discrete differential operators generated by our RBF-FD method by selecting shape parameters for each stencil that correspond to a global target condition number. We show the convergence of our method on two surfaces for different stencil sizes, and present applications to nonlinear PDEs simulated both on implicit/parametric surfaces and more general surfaces represented by point clouds.
引用
收藏
页码:745 / 768
页数:24
相关论文
共 40 条
[11]  
Dziuk G, 2007, IMA J NUMER ANAL, V27, P262, DOI [10.1093/imanum/drl023, 10.1093/imanum/dr1023]
[12]   STABLE EVALUATION OF GAUSSIAN RADIAL BASIS FUNCTION INTERPOLANTS [J].
Fasshauer, Gregory E. ;
Mccourt, Michael J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) :A737-A762
[13]   Transport schemes on a sphere using radial basis functions [J].
Flyer, Natasha ;
Wright, Grady B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 226 (01) :1059-1084
[14]   A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere [J].
Flyer, Natasha ;
Lehto, Erik ;
Blaise, Sebastien ;
Wright, Grady B. ;
St-Cyr, Amik .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (11) :4078-4095
[15]   A radial basis function method for the shallow water equations on a sphere [J].
Flyer, Natasha ;
Wright, Grady B. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2106) :1949-1976
[16]   Stable computation of multiquadric interpolants for all values of the shape parameter [J].
Fornberg, B ;
Wright, G .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (5-6) :853-867
[17]   Observations on the behavior of radial basis function approximations near boundaries [J].
Fornberg, B ;
Driscoll, TA ;
Wright, G ;
Charles, R .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :473-490
[18]   A stable algorithm for flat radial basis functions on a sphere [J].
Fornberg, Bengt ;
Piret, Cecile .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :60-80
[19]   The Runge phenomenon and spatially variable shape parameters in RBF interpolation [J].
Fornberg, Bengt ;
Zuev, Julia .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (03) :379-398
[20]   Stable calculation of Gaussian-based RBF-FD stencils [J].
Fornberg, Bengt ;
Lehto, Erik ;
Powell, Collin .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (04) :627-637