Boosted Ensemble Learning Based on Randomized NNs for Time Series Forecasting

被引:0
作者
Dudek, Grzegorz [1 ]
机构
[1] Czestochowa Tech Univ, Elect Engn Fac, Czestochowa, Poland
来源
COMPUTATIONAL SCIENCE - ICCS 2022, PT I | 2022年
关键词
Boosted ensemble learning; Ensemble forecasting; Multiple seasonality; Randomized NNs; Short-term load forecasting; NEURAL-NETWORKS; ALGORITHMS;
D O I
10.1007/978-3-031-08751-6_26
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Time series forecasting is a challenging problem particularly when a time series expresses multiple seasonality, nonlinear trend and varying variance. In this work, to forecast complex time series, we propose ensemble learning which is based on randomized neural networks, and boosted in three ways. These comprise ensemble learning based on residuals, corrected targets and opposed response. The latter two methods are employed to ensure similar forecasting tasks are solved by all ensemble members, which justifies the use of exactly the same base models at all stages of ensembling. Unification of the tasks for all members simplifies ensemble learning and leads to increased forecasting accuracy. This was confirmed in an experimental study involving forecasting time series with triple seasonality, in which we compare our three variants of ensemble boosting. The strong points of the proposed ensembles based on RandNNs are very rapid training and pattern-based time series representation, which extracts relevant information from time series.
引用
收藏
页码:360 / 374
页数:15
相关论文
共 50 条
  • [31] A neural network ensemble method with jittered training data for time series forecasting
    Zhang, G. Peter
    INFORMATION SCIENCES, 2007, 177 (23) : 5329 - 5346
  • [32] Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series
    Nasios, Ioannis
    Vogklis, Konstantinos
    INTERNATIONAL JOURNAL OF FORECASTING, 2022, 38 (04) : 1448 - 1459
  • [33] Forecasting Nonstationary Time Series Based on Hilbert-Huang Transform and Machine Learning
    Kurbatsky, V. G.
    Sidorov, D. N.
    Spiryaev, V. A.
    Tomin, N. V.
    AUTOMATION AND REMOTE CONTROL, 2014, 75 (05) : 922 - 934
  • [34] Deep Learning-Based Approach for Time Series Forecasting with Application to Electricity Load
    Torres, J. F.
    Fernandez, A. M.
    Troncoso, A.
    Martinez-Alvarez, F.
    BIOMEDICAL APPLICATIONS BASED ON NATURAL AND ARTIFICIAL COMPUTING, PT II, 2017, 10338 : 203 - 212
  • [35] A survey on machine learning models for financial time series forecasting
    Tang, Yajiao
    Song, Zhenyu
    Zhu, Yulin
    Yuan, Huaiyu
    Hou, Maozhang
    Ji, Junkai
    Tang, Cheng
    Li, Jianqiang
    NEUROCOMPUTING, 2022, 512 : 363 - 380
  • [36] An Empirical Comparison of Machine Learning Models for Time Series Forecasting
    Ahmed, Nesreen K.
    Atiya, Amir F.
    El Gayar, Neamat
    El-Shishiny, Hisham
    ECONOMETRIC REVIEWS, 2010, 29 (5-6) : 594 - 621
  • [37] Forecasting Field Production Using Machine Learning Time Series
    Awad, Johnny Sawma
    Assaf, Sena
    Safa, Bassel
    Srour, Issam
    CONSTRUCTION RESEARCH CONGRESS 2022: COMPUTER APPLICATIONS, AUTOMATION, AND DATA ANALYTICS, 2022, : 77 - 86
  • [38] Deep learning for time series forecasting: The electric load case
    Gasparin, Alberto
    Lukovic, Slobodan
    Alippi, Cesare
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2022, 7 (01) : 1 - 25
  • [39] Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
    Benidis, Konstantinos
    Rangapuram, Syama Sundar
    Flunkert, Valentin
    Wang, Yuyang
    Maddix, Danielle
    Turkmen, Caner
    Gasthaus, Jan
    Bohlke-Schneider, Michael
    Salinas, David
    Stella, Lorenzo
    Aubet, Francois-Xavier
    Callot, Laurent
    Januschowski, Tim
    ACM COMPUTING SURVEYS, 2023, 55 (06)
  • [40] Forecasting Time Series with Multiple Seasonal Cycles Using Neural Networks with Local Learning
    Dudek, Grzegorz
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT I, 2013, 7894 : 52 - 63