Shocks and universal statistics in (1+1)-dimensional relativistic turbulence

被引:8
|
作者
Liu, Xiao [1 ]
Oz, Yaron [1 ]
机构
[1] Tel Aviv Univ, Raymond & Beverly Sackler Sch Phys & Astron, IL-69978 Ramat Aviv, Israel
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2011年 / 03期
关键词
Field Theories in Lower Dimensions; Random Systems; INVISCID BURGERS-EQUATION;
D O I
10.1007/JHEP03(2011)006
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose that statistical averages in relativistic turbulence exhibit universal properties. We consider analytically the velocity and temperature differences structure functions in the (1+1)-dimensional relativistic turbulence in which shock waves provide the main contribution to the structure functions in the inertial range. We study shock scattering, demonstrate the stability of the shock waves, and calculate the anomalous exponents. We comment on the possibility of finite time blowup singularities.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Extremal statistics of curved growing interfaces in 1+1 dimensions
    Rambeau, J.
    Schehr, G.
    EPL, 2010, 91 (06)
  • [42] 1+1 dimensional compactifications of string theory
    Goheer, N
    Kleban, M
    Susskind, L
    PHYSICAL REVIEW LETTERS, 2004, 92 (19) : 191601 - 1
  • [43] A (1+1)-dimensional example of Quarkyonic matter
    Kojo, Toru
    NUCLEAR PHYSICS A, 2012, 877 : 70 - 94
  • [44] A (1+1)-dimensional reduced model of mesons
    Antonuccio, F
    Dalley, S
    PHYSICS LETTERS B, 1996, 376 (1-3) : 154 - 162
  • [45] On the (1+1/2) layer neural networks as universal approximators
    Ciuca, I
    Ware, JA
    IEEE WORLD CONGRESS ON COMPUTATIONAL INTELLIGENCE, 1998, : 1218 - 1223
  • [46] Universal features of the Abelian Polyakov loop in 1+1 dimensions
    Unmuth-Yockey, J.
    Zhang, Jin
    Bazavov, A.
    Meurice, Y.
    Tsai, S. -W.
    PHYSICAL REVIEW D, 2018, 98 (09)
  • [47] Proper relativistic position operators in 1+1 and 2+1 dimensions
    Choi, Taeseung
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (18):
  • [48] Universal Velocity Statistics in Decaying Turbulence
    Kuechler, Christian
    Bewley, Gregory P.
    Bodenschatz, Eberhard
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [49] Universal statistics of point vortex turbulence
    Esler, J. G.
    Ashbee, T. L.
    JOURNAL OF FLUID MECHANICS, 2015, 779 : 275 - 308
  • [50] On the integrability of the (1+1)-dimensional and (2+1)-dimensional Ito equations
    Wang, Yun-Hu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (01) : 138 - 144