2D Principal Component Analysis for Face and Facial-Expression Recognition

被引:28
作者
Oliveira, Luiz S. [1 ]
Koerich, Alessandro L. [3 ]
Mansano, Marcelo
Britto, Alceu S., Jr. [2 ]
机构
[1] Univ Fed Parana, Dept Informat, Grad Program Comp Sci, BR-80060000 Curitiba, Parana, Brazil
[2] Pontificia Univ Catolica Parana, Postgrad Program Appl Informat, Curitiba, Parana, Brazil
[3] Univ Fed Parana, Dept Elect Engn, BR-80060000 Curitiba, Parana, Brazil
关键词
2-DIMENSIONAL PCA; REPRESENTATION; METHODOLOGY; ALGORITHMS;
D O I
10.1109/MCSE.2010.149
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Although it shows enormous potential as a feature extractor, 2D principal component analysis produces numerous coefficients. Using a feature-selection algorithm based on a multiobjective genetic algorithm to analyze and discard irrelevant coefficients offers a solution that considerably reduces the number of coefficients, while also improving recognition rates.
引用
收藏
页码:9 / 13
页数:5
相关论文
共 11 条