Multiphysical modelling of planar solid oxide fuel cell stack layers

被引:42
作者
Russner, N. [1 ]
Dierickx, S. [1 ]
Weber, A. [1 ]
Reimert, R. [2 ]
Ivers-Tiffee, E. [1 ]
机构
[1] KIT, IAM, WET, D-76131 Karlsruhe, Germany
[2] KIT, Fuel Technol, Engler Bunte Inst, D-76131 Karlsruhe, Germany
关键词
Planar SOFC; Cell designs; Stack modelling; Temperature distribution; Heat and mass transport; RADIATION HEAT-TRANSFER; STATIONARY FEM MODEL; ELECTROCHEMICAL MODEL; THERMAL-CONDUCTIVITY; ENTROPY CHANGE; GAS-TRANSPORT; SOFC STACK; NI/YSZ; PERFORMANCE; ELECTRODES;
D O I
10.1016/j.jpowsour.2019.227552
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anode supported (ASC) and electrolyte supported cells (ESC) represent the most common cell concepts in solid oxide fuel cell (SOFC) technology. In ASCs, mechanical manageability is provided by a porous nickel/yttriastabilized zirconia (Ni/YSZ) substrate, whereas in ESCs a self-supporting dense YSZ electrolyte is applied. Naturally, the electrical loss contributions arising in ASCs and ESCs differ in quantity, leading to different temperature profiles within planar SOFC stacks. A two-dimensional, finite element method model was developed which considers the underlying chemical and physical processes, and calculates both the electrical performance and the thermal distribution of planar SOFC stack layers operated with reformate fuels. It was then validated by comparing simulation results with extensively measured (i) temperature profiles in SOFC stacks, (ii) gas composition changes along the fuel gas channel of planar ASCs, and (iii) current-voltage characteristics in a temperature range from 650 degrees C to 800 degrees C. The subsequent numerical study reveals (i) the different performances of ASC and ESC, (ii) the impact of operation conditions on performance and temperature profile and (iii) how the individual loss contributions generate temperature distributions in the stack layer.
引用
收藏
页数:16
相关论文
共 70 条
[1]   3-DIMENSIONAL AND TIME-DEPENDENT SIMULATION OF A PLANAR SOLID OXIDE FUEL-CELL STACK [J].
ACHENBACH, E .
JOURNAL OF POWER SOURCES, 1994, 49 (1-3) :333-348
[2]   Three dimensional modeling of an solid oxide fuel cell coupling charge transfer phenomena with transport processes and heat generation [J].
Andersson, Martin ;
Paradis, Hedvig ;
Yuan, Jinliang ;
Sunden, Bengt .
ELECTROCHIMICA ACTA, 2013, 109 :881-893
[3]  
[Anonymous], 2006, VDI-Warmeatlas, DOI [10.1007/978-3-540-32218-4, DOI 10.1007/978-3-540-32218-4]
[4]   Worldwide SOFC technology overview and benchmark [J].
Blum, L ;
Meulenberg, WA ;
Nabielek, H ;
Steinberger-Wilckens, R .
INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, 2005, 2 (06) :482-492
[5]   SOFC Stack and System Development at Forschungszentrum Julich [J].
Blum, L. ;
Batfalsky, P. ;
Fang, Q. ;
de Haart, L. G. J. ;
Malzbender, J. ;
Margaritis, N. ;
Menzler, N. H. ;
Peters, Ro. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) :F1199-F1205
[6]   Investigation of solid oxide fuel cell sealing behavior under stack relevant conditions at Forschungszentrum Julich [J].
Blum, Ludger ;
Gross, Sonja M. ;
Malzbender, Juergen ;
Pabst, Ulrich ;
Peksen, Murat ;
Peters, Roland ;
Vinke, Izaak C. .
JOURNAL OF POWER SOURCES, 2011, 196 (17) :7175-7181
[7]  
Breitkopf C., 2017, Handbook of Electrochemical Energy
[8]   Definition and sensitivity analysis of a finite volume SOFC model for a tubular cell geometry [J].
Campanari, S ;
Iora, P .
JOURNAL OF POWER SOURCES, 2004, 132 (1-2) :113-126
[9]   Thermal conductivity bounds for isotropic, porous materials [J].
Carson, JK ;
Lovatt, SJ ;
Tanner, DJ ;
Cleland, AC .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2005, 48 (11) :2150-2158
[10]  
Chapman S., 1990, Thermal Conduction and Diffusion in Gases