Number systems over orders

被引:7
|
作者
Petho, Attila [1 ,2 ]
Thuswaldner, Jorg [3 ]
机构
[1] Univ Debrecen, Dept Comp Sci, POB 12, H-4010 Debrecen, Hungary
[2] Univ Ostrava, Fac Sci, Dvorakova 7, CZ-70103 Ostrava, Czech Republic
[3] Univ Leoben, Chair Math & Stat, Franz Josef Str 18, A-8700 Leoben, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2018年 / 187卷 / 04期
基金
奥地利科学基金会;
关键词
Number system; Number field; Order; Tiling; RADIX REPRESENTATIONS; POLYNOMIALS;
D O I
10.1007/s00605-018-1191-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetKbe a number field of degree k and letObe an order inK. Ageneralized number system over O GNS for short) is a pair p, D) where p. O[x] is monic and D. O is a complete residue system modulo p0) containing 0. If each a. O[x] admits a representation of the form a = - 1 j= 0 dj x j mod p) with . N and d0,..., d - 1. D then the GNS p, D) is said to have the finiteness property. To a given fundamental domain F of the action of Zk on Rk we associate a class GF := {p, DF) : p. O[x]} of GNS whose digit sets DF are defined in terms of F in a natural way. We are able to prove general results on the finiteness property of GNS in GF by giving an abstract version of the well- known " dominant condition" on the absolute coefficient p0) of p. In particular, depending on mild conditions on the topology of F we characterize the finiteness property of px +/- m), DF) for fixed p and large m. N. Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.
引用
收藏
页码:681 / 704
页数:24
相关论文
共 50 条
  • [1] Number systems over orders
    Attila Pethő
    Jörg Thuswaldner
    Monatshefte für Mathematik, 2018, 187 : 681 - 704
  • [2] Number systems over general orders
    J.-H. Evertse
    K. Győry
    A. Pethő
    J. M. Thuswaldner
    Acta Mathematica Hungarica, 2019, 159 : 187 - 205
  • [3] Number systems over general orders
    Evertse, J-H
    Gyory, K.
    Petho, A.
    Thuswaldner, J. M.
    ACTA MATHEMATICA HUNGARICA, 2019, 159 (01) : 187 - 205
  • [4] Orders of a quaternion algebra over a number field
    Nakagawa, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1996, 479 : 183 - 194
  • [5] Higher Class Groups of Locally Triangular Orders over Number Fields
    Guo, Xuejun
    Kuku, Aderemi
    ALGEBRA COLLOQUIUM, 2009, 16 (01) : 79 - 84
  • [6] Complexity of resolution of systems of equations over partial orders
    Nikitin, A. Yu
    XII INTERNATIONAL SCIENTIFIC AND TECHNICAL CONFERENCE APPLIED MECHANICS AND SYSTEMS DYNAMICS, 2019, 1210
  • [7] On the number of independent orders
    Takeuchi, Kota
    Tsuboi, Akito
    ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (02)
  • [8] APPROXIMATION ORDERS OF A REAL NUMBER IN A FAMILY OF BETA-DYNAMICAL SYSTEMS
    Wang, Xiaoqing
    LI, Rao
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (05)
  • [9] Matrices over orders in algebraic number fields as sums of k-th powers
    Katre, SA
    Khule, SA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (03) : 671 - 675
  • [10] Capitulation for locally free class groups of orders of group algebras over number fields
    Greither, Cornelius
    Johnston, Henri
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 : 541 - 548