Number systems over orders

被引:8
作者
Petho, Attila [1 ,2 ]
Thuswaldner, Jorg [3 ]
机构
[1] Univ Debrecen, Dept Comp Sci, POB 12, H-4010 Debrecen, Hungary
[2] Univ Ostrava, Fac Sci, Dvorakova 7, CZ-70103 Ostrava, Czech Republic
[3] Univ Leoben, Chair Math & Stat, Franz Josef Str 18, A-8700 Leoben, Austria
来源
MONATSHEFTE FUR MATHEMATIK | 2018年 / 187卷 / 04期
基金
奥地利科学基金会;
关键词
Number system; Number field; Order; Tiling; RADIX REPRESENTATIONS; POLYNOMIALS;
D O I
10.1007/s00605-018-1191-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
LetKbe a number field of degree k and letObe an order inK. Ageneralized number system over O GNS for short) is a pair p, D) where p. O[x] is monic and D. O is a complete residue system modulo p0) containing 0. If each a. O[x] admits a representation of the form a = - 1 j= 0 dj x j mod p) with . N and d0,..., d - 1. D then the GNS p, D) is said to have the finiteness property. To a given fundamental domain F of the action of Zk on Rk we associate a class GF := {p, DF) : p. O[x]} of GNS whose digit sets DF are defined in terms of F in a natural way. We are able to prove general results on the finiteness property of GNS in GF by giving an abstract version of the well- known " dominant condition" on the absolute coefficient p0) of p. In particular, depending on mild conditions on the topology of F we characterize the finiteness property of px +/- m), DF) for fixed p and large m. N. Using our new theory, we are able to give general results on the connection between power integral bases of number fields and GNS.
引用
收藏
页码:681 / 704
页数:24
相关论文
共 35 条
[1]   Generalized radix representations and dynamical systems.: I [J].
Akiyama, S ;
Borbély, T ;
Brunotte, H ;
Pethö, A ;
Thuswaldner, JM .
ACTA MATHEMATICA HUNGARICA, 2005, 108 (03) :207-238
[2]   New criteria for canonical number systems [J].
Akiyama, S ;
Rao, H .
ACTA ARITHMETICA, 2004, 111 (01) :5-25
[3]   On canonical number systems [J].
Akiyama, S ;
Pethö, A .
THEORETICAL COMPUTER SCIENCE, 2002, 270 (1-2) :921-933
[4]  
Akiyama S., 2007, Math. Pannon, V18, P101
[5]  
[Anonymous], ACTA SCI MATH SZEGED
[6]   Number systems and tilings over Laurent series [J].
Beck, Tobias ;
Brunotte, Horst ;
Scheicher, Klaus ;
Thuswaldner, Joerg M. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2009, 147 :9-29
[7]  
Brunotte H, 2009, INTEGERS, VA19, P201
[8]  
Brunotte H., 2006, J. Thor. Nombres Bordeaux, V18, P537, DOI DOI 10.5802/JTNB.557
[9]  
Brunotte H., 2012, INTEGERS, V12, P709
[10]   SOME COMMENTS ON AKIYAMA'S CONJECTURE ON CNS POLYNOMIALS [J].
Brunotte, Horst .
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2018, 23 :167-175