Asymptotic integration of some nonlinear differential equations with fractional time derivative

被引:23
作者
Baleanu, Dumitru [1 ,2 ]
Agarwal, Ravi P. [3 ]
Mustafa, Octavian G. [4 ]
Cosulschi, Mirel [4 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, Dept Math & Comp Sci, TR-06530 Ankara, Turkey
[2] Inst Space Sci, Inst Laser Plasma & Radiat Phys, R-76911 Magurele, Romania
[3] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[4] Univ Craiova, DAL, Dept Math & Comp Sci, Craiova, Romania
关键词
EXISTENCE;
D O I
10.1088/1751-8113/44/5/055203
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish that, under some simple integral conditions regarding the nonlinearity, the (1 + alpha)-order fractional differential equation D-0(t)alpha (x') + f (t, x) = 0, t > 0, has a solution x is an element of C([0, +infinity), R) boolean AND C-1((0, +infinity), R), with lim(t SE arrow 0) [t(1-alpha)x'(t)] is an element of R, which can be expanded asymptotically as a+bt(alpha)+O(t(alpha-1)) when t ->+infinity for given real numbers a, b. Our arguments are based on fixed point theory. Here, D-0(t)alpha designates the Riemann-Liouville derivative of order alpha is an element of (0, 1).
引用
收藏
页数:9
相关论文
共 13 条
  • [1] [Anonymous], 2006, THEORY APPL FRACTION
  • [2] [Anonymous], 1979, COMPLEX ANAL
  • [3] [Anonymous], 1993, INTRO FRACTIONAL CA
  • [4] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [5] Avramescu C., 1969, ANN MAT PUR APPL, V81, P147
  • [6] On the solution set for a class of sequential fractional differential equations
    Baleanu, Dumitru
    Mustafa, Octavian G.
    Agarwal, Ravi P.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (38)
  • [7] An existence result for a superlinear fractional differential equation
    Baleanu, Dumitru
    Mustafa, Octavian G.
    Agarwal, Ravi P.
    [J]. APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1129 - 1132
  • [8] On the asymptotic integration of a class of sublinear fractional differential equations
    Baleanu, Dumitru
    Mustafa, Octavian G.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [9] Bellman R., 1953, STABILITY THEORY DIF
  • [10] Convolution quadrature time discretization of fractional diffusion-wave equations
    Cuesta, E
    Lubich, C
    Palencia, C
    [J]. MATHEMATICS OF COMPUTATION, 2006, 75 (254) : 673 - 696