Stabilization of Nonlinear Fornasini-Marchesini Systems

被引:4
作者
Emelianova, J. P. [1 ]
机构
[1] Alekseev Nizhny Novgorod State Tech Univ, Arzamas Polytech Inst, Arzamas, Russia
基金
俄罗斯基础研究基金会;
关键词
2D-systems; Fornasini-Marchesini model; stability; Lyapunov function; stabilizing control; linear matrix inequality (LMI); DYNAMICAL-SYSTEMS; STABILITY; PASSIVITY; MODELS;
D O I
10.1134/S0005117918100132
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers the 2D systems described by the Fornasini-Marchesini state-space model. Direct and converse theorems on the exponential stability of such systems are proved in terms of vector Lyapunov functions. The concepts of exponential passivity and a vector storage function are introduced for solving exponential stabilization problems. An example is given to illustrate the efficiency of the new results.
引用
收藏
页码:1903 / 1911
页数:9
相关论文
共 25 条
  • [1] PASSIVITY, FEEDBACK EQUIVALENCE, AND THE GLOBAL STABILIZATION OF MINIMUM PHASE NONLINEAR-SYSTEMS
    BYRNES, CI
    ISIDORI, A
    WILLEMS, JC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1991, 36 (11) : 1228 - 1240
  • [2] Stability analysis and stabilization of uncertain two-dimensional discrete systems: An LMI approach
    Du, C
    Xie, L
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1999, 46 (11): : 1371 - 1374
  • [3] Dymkov M., 2011, P 7 INT WORKSH MULT, P1
  • [4] EMELIANOVA J, 2014, IFAC PAPERSONLINE, V47, P8247, DOI [DOI 10.3182/20140824-6-ZA-1003.00729, 10.3182/20140824-6-ZA-1003.00729]
  • [5] Stability of Nonlinear 2D Systems Described by the Continuous-Time Roesser Model
    Emelianova, J. P.
    Pakshin, P. V.
    Galkowski, K.
    Rogers, E.
    [J]. AUTOMATION AND REMOTE CONTROL, 2014, 75 (05) : 845 - 858
  • [6] Stability of nonlinear discrete repetitive processes with Markovian switching
    Emelianova, Julia
    Pakshin, Pavel
    Galkowski, Krzysztof
    Rogers, Eric
    [J]. SYSTEMS & CONTROL LETTERS, 2015, 75 : 108 - 116
  • [7] DOUBLY-INDEXED DYNAMICAL-SYSTEMS - STATE-SPACE MODELS AND STRUCTURAL-PROPERTIES
    FORNASINI, E
    MARCHESINI, G
    [J]. MATHEMATICAL SYSTEMS THEORY, 1978, 12 (01): : 59 - 72
  • [8] Exponential feedback passivity and stabilizability of nonlinear systems
    Fradkov, AL
    Hill, DJ
    [J]. AUTOMATICA, 1998, 34 (06) : 697 - 703
  • [9] Experimentally supported 2D systems based iterative learning control law design for error convergence and performance
    Hladowski, Lukasz
    Galkowski, Krzysztof
    Cai, Zhonglun
    Rogers, Eric
    Freeman, Chris T.
    Lewin, Paul L.
    [J]. CONTROL ENGINEERING PRACTICE, 2010, 18 (04) : 339 - 348
  • [10] Stabilization of 2D saturated systems by state feedback control
    Hmamed, Abdelaziz
    Mesquine, Fouad
    Tadeo, Fernando
    Benhayoun, Mohamed
    Benzaouia, Abdellah
    [J]. MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2010, 21 (03) : 277 - 292