On Gaussian Optimal Smoothing of Non-Linear State Space Models

被引:78
作者
Sarkka, Simo [1 ]
Hartikainen, Jouni [1 ]
机构
[1] Aalto Univ, FI-00076 Aalto, Finland
关键词
Bayesian smoothing; Gaussian assumed density smoothing; non-linear optimal smoothing; non-linear Rauch-Tung-Striebel smoothing; FILTERS; ALGORITHMS;
D O I
10.1109/TAC.2010.2050017
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this note we shall present a new Gaussian approximation based framework for approximate optimal smoothing of non-linear stochastic state space models. The approximation framework can be used for efficiently solving non-linear fixed-interval, fixed-point and fixed-lag optimal smoothing problems. We shall also numerically compare accuracies of approximations, which are based on Taylor series expansion, unscented transformation, central differences and Gauss-Hermite quadrature.
引用
收藏
页码:1938 / 1941
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 2006, THESIS HELSINKI U TE
[2]  
[Anonymous], IEEE T SIGNAL PROCES
[3]  
[Anonymous], 2012, Optimal Estimation of Dynamic Systems
[4]   Cubature Kalman Filters [J].
Arasaratnam, Ienkaran ;
Haykin, Simon .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (06) :1254-1269
[5]  
Bar-Shalom Y., 2004, Estimation with applications to tracking and navigation: Theory algorithms and software
[6]  
Gelb A., 1989, Applied Optimal Estimation
[7]   Gaussian filters for nonlinear filtering problems [J].
Ito, K ;
Xiong, KQ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (05) :910-927
[8]  
Jazwinski A., 1970, STOCHASTIC PROCESSES
[9]   A new method for the nonlinear transformation of means and covariances in filters and estimators [J].
Julier, S ;
Uhlmann, J ;
Durrant-Whyte, HF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (03) :477-482
[10]  
JULIER SJ, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1628