A multitask deep learning approach for pulmonary embolism detection and identification

被引:22
|
作者
Ma, Xiaotian [1 ]
Ferguson, Emma C. [2 ]
Jiang, Xiaoqian [1 ]
Savitz, Sean, I [3 ]
Shams, Shayan [4 ]
机构
[1] Univ Texas Hlth Sci Ctr Houston, Sch Biomed Informat, Houston, TX 77030 USA
[2] McGovern Med Sch, Dept Diagnost & Intervent Imaging, Houston, TX USA
[3] McGovern Med Sch, Dept Neurol, Houston, TX USA
[4] San Jose State Univ, Dept Appl Data Sci, San Jose, CA 95192 USA
关键词
PART I; PATHOPHYSIOLOGY; EPIDEMIOLOGY; DIAGNOSIS; CT;
D O I
10.1038/s41598-022-16976-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Pulmonary embolism (PE) is a blood clot traveling to the lungs and is associated with substantial morbidity and mortality. Therefore, rapid diagnoses and treatments are essential. Chest computed tomographic pulmonary angiogram (CTPA) is the gold standard for PE diagnoses. Deep learning can enhance the radiologists'workflow by identifying PE using CTPA, which helps to prioritize important cases and hasten the diagnoses for at-risk patients. In this study, we propose a two-phase multitask learning method that can recognize the presence of PE and its properties such as the position, whether acute or chronic, and the corresponding right-to-left ventricle diameter (RV/LV) ratio, thereby reducing false-negative diagnoses. Trained on the RSNA-STR Pulmonary Embolism CT Dataset, our model demonstrates promising PE detection performances on the hold-out test set with the window-level AUROC achieving 0.93 and the sensitivity being 0.86 with a specificity of 0.85, which is competitive with the radiologists'sensitivities ranging from 0.67 to 0.87 with specificities of 0.89-0.99. In addition, our model provides interpretability through attention weight heatmaps and gradient-weighted class activation mapping (Grad-CAM). Our proposed deep learning model could predict PE existence and other properties of existing cases, which could be applied to practical assistance for PE diagnosis.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Deep Learning for Pneumonia Detection: A Combined CNN and YOLO Approach
    Rathnakannan Kailasam
    Saranya Balasubramanian
    Human-Centric Intelligent Systems, 2025, 5 (1): : 44 - 62
  • [42] Multitask Deep Learning for Segmentation and Classification of Primary Bone Tumors on Radiographs
    von Schacky, Claudio E.
    Wilhelm, Nikolas J.
    Schafer, Valerie S.
    Leonhardt, Yannik
    Gassert, Felix G.
    Foreman, Sarah C.
    Gassert, Florian T.
    Jung, Matthias
    Jungmann, Pia M.
    Russe, Maximilian F.
    Mogler, Carolin
    Knebel, Carolin
    von Eisenhart-Rothe, Rudiger
    Makowski, Marcus R.
    Woertler, Klaus
    Burgkart, Rainer
    Gersing, Alexandra S.
    RADIOLOGY, 2021, 301 (02) : 398 - 406
  • [43] Multitask Deep Learning for Joint Detection of Necrotizing Viral and Noninfectious Retinitis From Common Blood and Serology Test Data
    Ong, Kai Tzu-iunn
    Kwon, Taeyoon
    Jang, Harok
    Kim, Min
    Lee, Christopher Seungkyu
    Byeon, Suk Ho
    Kim, Sung Soo
    Yeo, Jinyoung
    Choi, Eun Young
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (02)
  • [44] Fault Detection and Identification Using Deep Learning Algorithms in Induction Motors
    Hussain, Majid
    Memon, Tayab Din
    Hussain, Imtiaz
    Memon, Zubair Ahmed
    Kumar, Dileep
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 133 (02): : 435 - 470
  • [45] A differentiated approach to the diagnosis of pulmonary embolism and deep venous thrombosis using multi-slice CT
    Wildberger, JE
    Mahnken, AH
    Sinha, AM
    Stargardt, A
    Haage, P
    Schaller, S
    Günther, RW
    ROFO-FORTSCHRITTE AUF DEM GEBIET DER RONTGENSTRAHLEN UND DER BILDGEBENDEN VERFAHREN, 2002, 174 (03): : 301 - 307
  • [46] Lung cell cancer identification mechanism using deep learning approach
    Wankhade, Shalini
    Vigneshwari, S.
    SOFT COMPUTING, 2023, 28 (Suppl 2) : 657 - 657
  • [47] Subspace Regularized Sparse Multitask Learning for Multiclass Neurodegenerative Disease Identification
    Zhu, Xiaofeng
    Suk, Heung-Il
    Lee, Seong-Whan
    Shen, Dinggang
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (03) : 607 - 618
  • [48] Association between risk stratification for pulmonary embolism and deep vein thrombosis of lower extremities
    Wang, Xiao-Hui
    Cui, Long-Biao
    Liu, Yuliang
    Han, Xiaoli
    Chi, Jing
    Yang, Bijun
    Chen, Hong
    CLINICAL RESPIRATORY JOURNAL, 2020, 14 (07): : 631 - 637
  • [49] Comparison of doses for pulmonary embolism detection with helical CT and pulmonary angiography
    Resten, A
    Mausoleo, F
    Valero, M
    Musset, D
    EUROPEAN RADIOLOGY, 2003, 13 (07) : 1515 - 1521
  • [50] Deep Learning Approach for Arm Fracture Detection Based on an Improved YOLOv8 Algorithm
    Meza, Gerardo
    Ganta, Deepak
    Torres, Sergio Gonzalez
    ALGORITHMS, 2024, 17 (11)