A Test of Using Markov-Switching GARCH Models in Oil and Natural Gas Trading

被引:13
|
作者
De la Torre-Torres, Oscar V. [1 ]
Galeana-Figueroa, Evaristo [1 ]
Alvarez-Garcia, Jose [2 ]
机构
[1] St Nicholas & Hidalgo Michoacan State Univ UMSNH, Fac Accounting & Management, Morelia 58030, Michoacan, Mexico
[2] Univ Extremadura, Fac Business Finance & Tourism, Financial Econ & Accounting Dept, Caceres 10071, Spain
关键词
Markov-switching; Markov-switching GARCH; energy futures; commodities; portfolio management; active investment; diversification; institutional investors; energy price hedging; TIME-SERIES; CONDITIONAL HETEROSKEDASTICITY; ASSET ALLOCATION; PRICES FOLLOW; STOCK-PRICES; RANDOM-WALK; PERFORMANCE; VOLATILITY; INTEGRATION; REGRESSION;
D O I
10.3390/en13010129
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this paper, we test the use of Markov-switching (MS) GARCH (MSGARCH) models for trading either oil or natural gas futures. Using weekly data from 7 January 1994 to 31 May 2019, we tested the next trading rule: to invest in the simulated commodity if the investor expects to be in the low-volatility regime at t + 1 or to otherwise hold the risk-free asset. Assumptions for our simulations included the following: (1) we assumed that the investors trade in a homogeneous (Gaussian or t-Student) two regime context and (2) the investor used a time-fixed, ARCH, or GARCH variance in each regime. Our results suggest that the use of the MS Gaussian model, with time-fixed variance, leads to the best performance in the oil market. For the case of natural gas, we found no benefit of using our trading rule against a buy-and-hold strategy in the three-month U.S. Treasury bills.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Enhancing Portfolio Performance and VIX Futures Trading Timing with Markov-Switching GARCH Models
    De la Torre-Torres, Oscar V.
    Venegas-Martinez, Francisco
    Martinez-Torre-Enciso, Ma Isabel
    MATHEMATICS, 2021, 9 (02) : 1 - 23
  • [2] Testing an Algorithm with Asymmetric Markov-Switching GARCH Models in US Stock Trading
    De la Torre-Torres, Oscar V.
    Aguilasocho-Montoya, Dora
    Alvarez-Garcia, Jose
    SYMMETRY-BASEL, 2021, 13 (12):
  • [3] Markov-Switching GARCH Models in R: The MSGARCH Package
    Ardia, David
    Bluteau, Keven
    Boudt, Kris
    Catania, Leopoldo
    Trottier, Denis-Alexandre
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 91 (04):
  • [4] Modelling volatility of cryptocurrencies using Markov-Switching GARCH models
    Caporale, Guglielmo Maria
    Zekokh, Timur
    RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE, 2019, 48 : 143 - 155
  • [5] Using Markov-switching models with Markov chain Monte Carlo inference methods in agricultural commodities trading
    De la Torre-Torres, Oscar, V
    Aguilasocho-Montoya, Dora
    Alvarez-Garcia, Jose
    Simonetti, Biagio
    SOFT COMPUTING, 2020, 24 (18) : 13823 - 13836
  • [6] Bayesian Nonparametric Panel Markov-Switching GARCH Models
    Casarin, Roberto
    Costantini, Mauro
    Osuntuyi, Anthony
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (01) : 135 - 146
  • [7] A Family of Markov-Switching Garch Processes
    Liu, Ji-Chun
    JOURNAL OF TIME SERIES ANALYSIS, 2012, 33 (06) : 892 - 902
  • [8] Maximum likelihood estimation of the Markov-switching GARCH model
    Augustyniak, Maciej
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 76 : 61 - 75
  • [9] On Markov-switching asymmetric log GARCH models: stationarity and estimation
    Ghezal, Ahmed
    Zemmouri, Imane
    FILOMAT, 2023, 37 (29) : 9879 - 9897
  • [10] MODELLING VOLATILITY OF PETROLEUM PRODUCTIONS BY USING MARKOV-SWITCHING GARCH MODELS
    Duraisamy, Pachiyappan
    Alam, Md Shabbir
    Uddin, Mohammed Ahmar
    Kuppusamy, Alagirisamy
    Palanisamy, Manigandan
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2022, 18 : 1657 - 1667