Making an unknown unknown a known unknown: Missing data in longitudinal neuroimaging studies

被引:36
作者
Matta, Tyler H. [1 ]
Flournoy, John C. [2 ]
Byrne, Michelle L. [2 ]
机构
[1] Univ Oslo, Ctr Educ Measurement, Oslo, Norway
[2] Univ Oregon, Dept Psychol, Eugene, OR 97403 USA
关键词
Neuroimaging; Missing data; Likelihood; Longitudinal data; PATTERN-MIXTURE MODELS; NEURAL BASES; INFERENCE; IMPUTATION;
D O I
10.1016/j.dcn.2017.10.001
中图分类号
B844 [发展心理学(人类心理学)];
学科分类号
040202 ;
摘要
The analysis of longitudinal neuroimaging data within the massively univariate framework provides the opportunity to study empirical questions about neurodevelopment. Missing outcome data are an all-to-common feature of any longitudinal study, a feature that, if handled improperly, can reduce statistical power and lead to biased parameter estimates. The goal of this paper is to provide conceptual clarity of the issues and non-issues that arise from analyzing incomplete data in longitudinal studies with particular focus on neuroimaging data. This paper begins with a review of the hierarchy of missing data mechanisms and their relationship to likelihood-based methods, a review that is necessary not just for likelihood-based methods, but also for multiple-imputation methods. Next, the paper provides a series of simulation studies with designs common in longitudinal neuroimaging studies to help illustrate missing data concepts regardless of interpretation. Finally, two applied examples are used to demonstrate the sensitivity of inferences under different missing data assumptions and how this may change the substantive interpretation. The paper concludes with a set of guidelines for analyzing incomplete longitudinal data that can improve the validity of research findings in developmental neuroimaging research.
引用
收藏
页码:83 / 98
页数:16
相关论文
共 39 条
  • [1] A Review of Hot Deck Imputation for Survey Non-response
    Andridge, Rebecca R.
    Little, Roderick J. A.
    [J]. INTERNATIONAL STATISTICAL REVIEW, 2010, 78 (01) : 40 - 64
  • [2] Fitting Linear Mixed-Effects Models Using lme4
    Bates, Douglas
    Maechler, Martin
    Bolker, Benjamin M.
    Walker, Steven C.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2015, 67 (01): : 1 - 48
  • [3] Belin T. R., 2014, HDB MISSING DATA MET, P525
  • [4] Variance component testing in multilevel models
    Berkhof, J
    Snijders, TAB
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2001, 26 (02) : 133 - 152
  • [5] Linear mixed-effects modeling approach to FMRI group analysis
    Chen, Gang
    Saad, Ziad S.
    Britton, Jennifer C.
    Pine, Daniel S.
    Cox, Robert W.
    [J]. NEUROIMAGE, 2013, 73 : 176 - 190
  • [6] Diggle PJ., 2002, ANAL LONGITUDINAL DA
  • [7] Automatically parcellating the human cerebral cortex
    Fischl, B
    van der Kouwe, A
    Destrieux, C
    Halgren, E
    Ségonne, F
    Salat, DH
    Busa, E
    Seidman, LJ
    Goldstein, J
    Kennedy, D
    Caviness, V
    Makris, N
    Rosen, B
    Dale, AM
    [J]. CEREBRAL CORTEX, 2004, 14 (01) : 11 - 22
  • [8] Friston KJ., 1994, HUMAN BRAIN MAPPING, V2, P189, DOI [10.1002/hbm.460020402, DOI 10.1002/HBM.460020402]
  • [9] Goldstein H., 2014, HDB MISSING DATA MET, p[295, 46]
  • [10] A Practical Guide for Improving Transparency and Reproducibility in Neuroimaging Research
    Gorgolewski, Krzysztof J.
    Poldrack, Russell A.
    [J]. PLOS BIOLOGY, 2016, 14 (07)