Information theoretic measures for quantifying sequence-ensemble relationships of intrinsically disordered proteins

被引:19
|
作者
Cohan, Megan C. [1 ,2 ]
Ruff, Kiersten M. [1 ,2 ]
Pappu, Rohit, V [1 ,2 ]
机构
[1] Washington Univ, Dept Biomed Engn, One Brookings Dr,Campus Box 1097, St Louis, MO 63130 USA
[2] Washington Univ, CSELS, One Brookings Dr,Campus Box 1097, St Louis, MO 63130 USA
来源
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
computations; ensemble entropy matrix; intrinsically disordered proteins; protein design; sequence-ensemble relationships; MONTE-CARLO SIMULATIONS; FREE-ENERGY LANDSCAPES; SINGLE-MOLECULE; CONFORMATIONAL HETEROGENEITY; UNSTRUCTURED PROTEIN; COMPUTATIONAL DESIGN; ATOMIC-RESOLUTION; DYNAMICS; BINDING; EVOLUTION;
D O I
10.1093/protein/gzz014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intrinsically disordered proteins (IDPs) contribute to a multitude of functions. De novo design of IDPs should open the door to modulating functions and phenotypes controlled by these systems. Recent design efforts have focused on compositional biases and specific sequence patterns as the design features. Analysis of the impact of these designs on sequence-function relationships indicates that individual sequence/compositional parameters are insufficient for describing sequence-function relationships in IDPs. To remedy this problem, we have developed information theoretic measures for sequence-ensemble relationships (SERs) of IDPs. These measures rely on prior availability of statistically robust conformational ensembles derived from all atom simulations. We show that the measures we have developed are useful for comparing sequence-ensemble relationships even when sequence is poorly conserved. Based on our results, we propose that de novo designs of IDPs, guided by knowledge of their SERs, should provide improved insights into their sequence-ensemble-function relationships.
引用
收藏
页码:191 / 202
页数:12
相关论文
共 50 条
  • [21] Sequence-encoded phase behavior of intrinsically disordered proteins
    Pappu, Rohit
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [22] Sequence Complexity of Amyloidogenic Regions in Intrinsically Disordered Human Proteins
    Das, Swagata
    Pal, Uttam
    Das, Supriya
    Bagga, Khyati
    Roy, Anupam
    Mrigwani, Arpita
    Maiti, Nakul C.
    PLOS ONE, 2014, 9 (03):
  • [23] Intrinsically Disordered Proteins Can Behave as Different Polymers across Their Conformational Ensemble
    Chakraborty, Saikat
    Morozova, Tatiana I.
    Barrat, Jean-Louis
    JOURNAL OF PHYSICAL CHEMISTRY B, 2025, 129 (09): : 2359 - 2369
  • [24] Quantitative prediction of ensemble dynamics, shapes and contact propensities of intrinsically disordered proteins
    Yu, Lei
    Bruschweiler, Rafael
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [25] MOBIDB in 2025: integrating ensemble properties and function annotations for intrinsically disordered proteins
    Piovesan, Damiano
    Del Conte, Alessio
    Mehdiabadi, Mahta
    Aspromonte, Maria Cristina
    Blum, Matthias
    Tesei, Giulio
    von Bulow, Soren
    Lindorff-Larsen, Kresten
    Tosatto, Silvio C. E.
    NUCLEIC ACIDS RESEARCH, 2024,
  • [26] PED in 2021: a major update of the protein ensemble database for intrinsically disordered proteins
    Lazar, Tamas
    Martinez-Perez, Elizabeth
    Quaglia, Federica
    Hatos, Andras
    Chemes, Lucia B.
    Iserte, Javier A.
    Mendez, Nicolas A.
    Garrone, Nicolas A.
    Saldano, Tadeo E.
    Marchetti, Julia
    Velez Rueda, Ana Julia
    Bernado, Pau
    Blackledge, Martin
    Cordeiro, Tiago N.
    Fagerberg, Eric
    Forman-Kay, Julie D.
    Fornasari, Maria S.
    Gibson, Toby J.
    Gomes, Gregory-Neal W.
    Gradinaru, Claudiu C.
    Head-Gordon, Teresa
    Jensen, Malene Ringkjobing
    Lemke, Edward A.
    Longhi, Sonia
    Marino-Buslje, Cristina
    Minervini, Giovanni
    Mittag, Tanja
    Monzon, Alexander Miguel
    Pappu, Rohit, V
    Parisi, Gustavo
    Ricard-Blum, Sylvie
    Ruff, Kiersten M.
    Salladini, Edoardo
    Skepo, Marie
    Svergun, Dmitri
    Vallet, Sylvain D.
    Varadi, Mihaly
    Tompa, Peter
    Tosatto, Silvio C. E.
    Piovesan, Damiano
    NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) : D404 - D411
  • [27] Broad Ensemble Generator (BEG): Software to Generate Ensembles for Intrinsically Disordered Proteins
    Kashtanov, Stepan
    Ytreberg, F. Marty
    BIOPHYSICAL JOURNAL, 2011, 100 (03) : 59 - 59
  • [28] Structural Divergence Exceeds Sequence Divergence for a Family of Intrinsically Disordered Proteins
    Borcherds, Wade M.
    Kashtanov, Stepan
    Daughdrill, Gary W.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 54A - 54A
  • [29] From Sequence and Forces to Structure, Function, and Evolution of Intrinsically Disordered Proteins
    Forman-Kay, Julie D.
    Mittag, Tanja
    STRUCTURE, 2013, 21 (09) : 1492 - 1499
  • [30] DeepCLD: An Efficient Sequence-Based Predictor of Intrinsically Disordered Proteins
    Fang, Min
    He, Yufeng
    Du, Zhihua
    Uversky, Vladimir N.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) : 3154 - 3159