Bus Arrival Time Prediction Using Recurrent Neural Network with LSTM Architecture

被引:19
|
作者
Agafonov, A. A. [1 ]
Yumaganov, A. S. [1 ]
机构
[1] Samara Natl Res Univ, Samara 443086, Russia
关键词
arrival time prediction; artificial neural network; long short-term memory; intelligent transportation system; CITY TRANSPORT; HYBRID MODEL; REAL-TIME;
D O I
10.3103/S1060992X19030081
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Arrival time of public vehicles to transport stops is a key point of information systems for passengers. Accurate information on the arrival time is important for travel arrangements since it helps to decrease the wait time at a stop and to choose an optimal alternate route. Recently, such information has been included to mobile navigation applications too. In the present paper, we analyze the abilities of the LSTM neural network to predict the arrival time of public vehicles. This model accounts for heterogeneous information about transport situation that directly or indirectly has an impact on the travel time prediction and includes statistical and real-time data of traffic flow. We examined the model experimentally using traffic data on bus routes in the city of Samara, Russia. The obtained results confirm that the predictions provided by our model are of a high quality and it can be used for real-time arrival time prediction of public transport in the case of a large-scale transportation network.
引用
收藏
页码:222 / 230
页数:9
相关论文
共 50 条
  • [1] Bus Arrival Time Prediction Using Recurrent Neural Network with LSTM Architecture
    A. A. Agafonov
    A. S. Yumaganov
    Optical Memory and Neural Networks, 2019, 28 : 222 - 230
  • [2] Bus Arrival Time Prediction with LSTM Neural Network
    Agafonov, Anton
    Yumaganov, Alexander
    ADVANCES IN NEURAL NETWORKS - ISNN 2019, PT I, 2019, 11554 : 11 - 18
  • [3] A LSTM Based Bus Arrival Time Prediction Method
    Zeng, Lingqiu
    He, Guangyan
    Han, Qingwen
    Ye, Lei
    Li, Fengxi
    Chen, Lidong
    2019 IEEE SMARTWORLD, UBIQUITOUS INTELLIGENCE & COMPUTING, ADVANCED & TRUSTED COMPUTING, SCALABLE COMPUTING & COMMUNICATIONS, CLOUD & BIG DATA COMPUTING, INTERNET OF PEOPLE AND SMART CITY INNOVATION (SMARTWORLD/SCALCOM/UIC/ATC/CBDCOM/IOP/SCI 2019), 2019, : 544 - 549
  • [4] Stock Market Prediction Using LSTM Recurrent Neural Network
    Moghar, Adil
    Hamiche, Mhamed
    11TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT) / THE 3RD INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40) / AFFILIATED WORKSHOPS, 2020, 170 : 1168 - 1173
  • [5] An architecture for emergency event prediction using LSTM recurrent neural networks
    Cortez, Bitzel
    Carrera, Berny
    Kim, Young-Jin
    Jung, Jae-Yoon
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 97 : 315 - 324
  • [6] Bus Arrival Time Prediction Using Wavelet Neural Network Trained by Improved Particle Swarm Optimization
    Lai, Yuanwen
    Easa, Said
    Sun, Dazu
    Wei, Yian
    JOURNAL OF ADVANCED TRANSPORTATION, 2020, 2020
  • [7] A Bus Arrival Time Prediction Method Based on Position Calibration and LSTM
    Han, Qingwen
    Liu, Ke
    Zeng, Lingqiu
    He, Guangyan
    Ye, Lei
    Li, Fengxi
    IEEE ACCESS, 2020, 8 (08): : 42372 - 42383
  • [8] A data analytics framework for reliable bus arrival time prediction using artificial neural networks
    Hassannayebi, Erfan
    Farjad, Ali
    Azadnia, Alireza
    Javidi, Mehrdad
    Chunduri, Raghavendra
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2023,
  • [9] Learning to Predict Bus Arrival Time From Heterogeneous Measurements via Recurrent Neural Network
    Pang, Junbiao
    Huang, Jing
    Du, Yong
    Yu, Haitao
    Huang, Qingming
    Yin, Baocai
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2019, 20 (09) : 3283 - 3293
  • [10] Bus arrival time prediction at bus stop with multiple routes
    Yu, Bin
    Lam, William H. K.
    Tam, Mei Lam
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2011, 19 (06) : 1157 - 1170