Neural Random Forests

被引:49
作者
Biau, Gerard [1 ]
Scornet, Erwan [2 ]
Welbl, Johannes [3 ]
机构
[1] Sorbonne Univ, CNRS, LPSM, Paris, France
[2] Ecole Polytech, CNRS, Ctr Math Appl, Palaiseau, France
[3] UCL, London, England
来源
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY | 2019年 / 81卷 / 02期
关键词
Random forests; Neural networks; Ensemble methods; Randomization; Sparse networks;
D O I
10.1007/s13171-018-0133-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman (2001) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries than trees. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems.
引用
收藏
页码:347 / 386
页数:40
相关论文
共 50 条
  • [41] Online incremental random forests
    Osman, Hassab Elgaw
    Osamut, Hasegawa
    [J]. INTERNATIONAL CONFERENCE ON MACHINE VISION 2007, PROCEEDINGS, 2007, : 102 - +
  • [42] The parameter sensitivity of random forests
    Huang, Barbara F. F.
    Boutros, Paul C.
    [J]. BMC BIOINFORMATICS, 2016, 17
  • [43] Generalized random shapelet forests
    Isak Karlsson
    Panagiotis Papapetrou
    Henrik Boström
    [J]. Data Mining and Knowledge Discovery, 2016, 30 : 1053 - 1085
  • [44] Random forests for classification in ecology
    Cutler, D. Richard
    Edwards, Thomas C., Jr.
    Beard, Karen H.
    Cutler, Adele
    Hess, Kyle T.
    [J]. ECOLOGY, 2007, 88 (11) : 2783 - 2792
  • [45] Hunting for Fraudsters in Random Forests
    Konijn, R. M.
    Kowalczyk, W.
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 174 - 185
  • [46] Random Forests for Object Detection
    Zhu, Mingming
    Ye, Lang
    Xia, Siyu
    Pan, Hong
    [J]. PROCEEDINGS OF THE 2015 CHINESE INTELLIGENT AUTOMATION CONFERENCE: INTELLIGENT INFORMATION PROCESSING, 2015, 336 : 267 - 274
  • [47] Covariance regression with random forests
    Alakus, Cansu
    Larocque, Denis
    Labbe, Aurelie
    [J]. BMC BIOINFORMATICS, 2023, 24 (01)
  • [48] Spatiotemporal Relational Random Forests
    Supinie, Timothy A.
    McGovern, Amy
    Williams, John
    Abernethy, Jennifer
    [J]. 2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 630 - +
  • [49] Consistency of random survival forests
    Ishwaran, Hemant
    Kogalur, Udaya B.
    [J]. STATISTICS & PROBABILITY LETTERS, 2010, 80 (13-14) : 1056 - 1064
  • [50] Diversity-Based Random Forests with Sample Weight Learning
    Yang, Chun
    Yin, Xu-Cheng
    [J]. COGNITIVE COMPUTATION, 2019, 11 (05) : 685 - 696