共 50 条
Non fourier heat transfer enhancement in power law fluid with mono and hybrid nanoparticles
被引:11
作者:
Sadiq, M. Adil
[1
,2
]
机构:
[1] DCC KFUPM, Dept Math, Box 5084, Dhahran 31261, Saudi Arabia
[2] Interdisciplinary Res Ctr Hydrogen & Energy Stora, Dhahran 31261, Saudi Arabia
关键词:
MHD NANOFLUID FLOW;
MASS-TRANSFER;
3-DIMENSIONAL FLOW;
STRETCHING SHEET;
PERISTALTIC FLOW;
MAGNETIC-FIELD;
TRANSPORT;
WATER;
SIMULATION;
CHANNEL;
D O I:
10.1038/s41598-021-00423-2
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
Several polymers like ethylene glycol exhibit non-Newtonian rheological behavior. Ethylene glycol is a world-widely used engine coolant and therefore, investigation of thermal enhancement by dispersing mono and hybrid nanoparticles in ethylene glycol is worthful. Since ethylene glycol has shear rate-dependent viscosity and it obeys the power-law rheological model. Therefore, based on these facts, the power-law rheological model with thermophysical properties is augmented with basic law of heat transfer in fluid for the modeling of the considered physical situation. MoS2 are taken as mono-nanoparticles where MoS2 and SiO2 are taken as hybrid nanoparticles. Comparative study for the enhancement of thermal performance of MoS2 ethylene glycol and MoS2-SiO2- ethylene glycol is done. For energy conservation, non-Fourier's law of Cattaneo-Christov is used. The power-law fluid becomes more heat generative due to the dispersion of MoS2 and SiO2. However, MoS2-power-law fluid is less heat generative relative to MoS2-SiO2-nanofluid. Thermal relaxation time is found proportional to the ability of the fluid to restore its thermal equilibrium.
引用
收藏
页数:14
相关论文