Mapping Between Charge-Dyon and Position-Dependent Mass Systems

被引:0
|
作者
de Jesus, Anderson L. [1 ]
Schmidt, Alexandre G. M. [1 ]
机构
[1] Univ Fed Fluminense, Inst Ciencias Exatas, Dept Fis Volta Redonda, R Des Ellis Hermydio Figueira 783,Bloco C, BR-27213145 Volta Redonda, RJ, Brazil
关键词
position-dependent mass; Schrodinger equation; Klein-Gordon equation; dyon; MAGNETIC MONOPOLES; STRINGS;
D O I
10.1088/0253-6102/71/10/1261
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The primary purpose of this work is to reproduce the scenario composed of a charge-dyon system utilizing position-dependent effective mass (PDM) background in the non-relativistic and in the relativistic regimes. In the non-relativistic case we substitute the exact charge-dyon eigenfunction into PDM Schrodinger equation, in the Zhu-Kroemer parametrization, and then solve it for the mass distribution considering M = M (r). Analogously, in the relativistic case we study the Klein-Gordon equation for a position-dependent mass, and in this case, we are able to analytically solve the equation for M = M (r; theta).
引用
收藏
页码:1261 / 1266
页数:6
相关论文
共 50 条
  • [1] Mapping Between Charge-Dyon and Position-Dependent Mass Systems
    Anderson L.de Jesus
    Alexandre G.M.Schmidt
    CommunicationsinTheoreticalPhysics, 2019, 71 (10) : 1261 - 1266
  • [2] Mapping between charge-monopole and position-dependent mass systems
    Schmidt, Alexandre G. M.
    de Jesus, Anderson L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (10)
  • [3] Exact mapping between charge-monopole and position-dependent effective mass systems via Pauli equation
    de Jesus, Anderson L.
    Schmidt, Alexandre G. M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (12)
  • [4] Mapping between conical space and non-relativistic position-dependent effective mass systems
    de Jesus, Anderson L.
    Schmidt, Alexandre G. M.
    PHYSICA SCRIPTA, 2019, 94 (08)
  • [5] Displacement operator for quantum systems with position-dependent mass
    Costa Filho, R. N.
    Almeida, M. P.
    Farias, G. A.
    Andrade, J. S., Jr.
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [7] Bounded motion for classical systems with position-dependent mass
    Cruz y Cruz, S.
    Santiago-Cruz, C.
    SYMMETRIES IN SCIENCE XVI, 2014, 538
  • [8] Quantum Dynamical Recurrences in Position-Dependent Mass Systems
    Shahid Iqbal
    Journal of Russian Laser Research, 2022, 43 : 96 - 103
  • [9] Energy eigenvalues for the systems with position-dependent effective mass
    Ou, YC
    Cao, ZQ
    Shen, QH
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (14): : 4283 - 4288
  • [10] On the singular position-dependent mass
    Lima, F. C. E.
    Belchior, F. M.
    Almeida, C. A. S.
    PHYSICA SCRIPTA, 2025, 100 (01)