Semiprime and weakly compressible modules

被引:0
作者
Dehghani, N. [1 ]
Vedadi, M. R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan, Iran
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2016年 / 45卷 / 02期
关键词
Krull dimension; semiprime module; singular semi-Artinian ring; weakly compressible module;
D O I
10.15672/HJMS.20164512503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is called semiprime (resp. weakly compressible) if it is cogenerated by each of its essential submodules (resp. Hom(R) (M, N) N is nonzero for every 0 not equal N <= M-R). We carry out a study of weakly compressible (semiprime) modules and show that there exist semiprime modules which are not weakly compressible. Weakly compressible modules with enough critical submodules are characterized in different ways. For certain rings R, including prime hereditary Noetherian rings, it is proved that M-R is weakly compressible (resp. semiprime) if and only if M is an element of Cog (Soc(M) circle plus R) and M / Soc (M) is an element of Cog (R) (resp. M is an element of Cog (Soc(M) circle plus R)). These considerations settle two questions, namely Qu 1, and Qu 2, in [6, p 92].
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
[41]   Classification of Simple Weight Modules over the Schrodinger Algebra [J].
Bavula, V. V. ;
Lu, T. .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2018, 61 (01) :16-39
[42]   ON CHAINS OF CLASSICAL PRIME SUBMODULES AND DIMENSION THEORY OF MODULES [J].
Behboodi, M. ;
Shojaee, S. H. .
BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2010, 36 (01) :149-166
[43]   Modules with chain conditions on non-essential submodules [J].
Smith, PF ;
Vedadi, MR .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (05) :1881-1894
[44]   COFINITENESS AND NON-VANISHING OF LOCAL COHOMOLOGY MODULES [J].
Bagheriyeh, Iraj ;
Bahmanpour, Kamal ;
A'Zami, Jafar .
JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (03) :305-321
[45]   LINEAR PROPERTIES OF GOLDIE DIMENSION OF MODULES AND MODULAR LATTICES [J].
Puczylowski, Edmund R. .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52A :139-150
[46]   ON THE FINITENESS OF BASS NUMBERS OF LOCAL COHOMOLOGY MODULES AND COMINIMAXNESS [J].
Bahmanpour, Kamal ;
Naghipour, Reza ;
Sedghi, Monireh .
HOUSTON JOURNAL OF MATHEMATICS, 2014, 40 (02) :319-337
[47]   VANISHING, BASS NUMBERS, AND COMINIMAXNESS OF LOCAL COHOMOLOGY MODULES [J].
A'zami, Jafar .
REVISTA DE LA UNION MATEMATICA ARGENTINA, 2017, 58 (01) :77-83
[48]   Cofiniteness of local cohomology modules for ideals of small dimension [J].
Bahmanpour, Kamal ;
Naghipour, Reza .
JOURNAL OF ALGEBRA, 2009, 321 (07) :1997-2021
[49]   A NEW INVARIANT DERIVED FROM LOCAL COHOMOLOGY MODULES [J].
Sadegh, Yasin ;
A'Zami, Jafar ;
Yazdani, Saeed .
MATHEMATICAL REPORTS, 2023, 25 (04) :553-563
[50]   A Note on Homological Dimensions of Artinian Local Cohomology Modules [J].
Bahmanpour, Kamal .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (03) :491-499