Semiprime and weakly compressible modules

被引:0
作者
Dehghani, N. [1 ]
Vedadi, M. R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan, Iran
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2016年 / 45卷 / 02期
关键词
Krull dimension; semiprime module; singular semi-Artinian ring; weakly compressible module;
D O I
10.15672/HJMS.20164512503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is called semiprime (resp. weakly compressible) if it is cogenerated by each of its essential submodules (resp. Hom(R) (M, N) N is nonzero for every 0 not equal N <= M-R). We carry out a study of weakly compressible (semiprime) modules and show that there exist semiprime modules which are not weakly compressible. Weakly compressible modules with enough critical submodules are characterized in different ways. For certain rings R, including prime hereditary Noetherian rings, it is proved that M-R is weakly compressible (resp. semiprime) if and only if M is an element of Cog (Soc(M) circle plus R) and M / Soc (M) is an element of Cog (R) (resp. M is an element of Cog (Soc(M) circle plus R)). These considerations settle two questions, namely Qu 1, and Qu 2, in [6, p 92].
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
[21]   HARTSHORNE'S QUESTIONS AND WEAKLY COFINITENESS [J].
Roshan-Shekalgourabi, Hajar ;
Hatamkhani, Marzieh .
MATHEMATICAL REPORTS, 2020, 22 (3-4) :329-340
[22]   The Krull Dimension of Certain Semiprime Modules Versus Their α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-Shortness [J].
S. M. Javdannezhad ;
N. Shirali .
Mediterranean Journal of Mathematics, 2018, 15 (3)
[23]   ON THE CLASSIFICATION OF alpha-KRULL MODULES [J].
Javdannezhad, S. M. ;
Shirali, N. .
JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2018, 40 (01) :1-12
[24]   Cofiniteness of extension functors of cofinite modules [J].
Abazari, Rasoul ;
Bahmanpour, Kamal .
JOURNAL OF ALGEBRA, 2011, 330 (01) :507-516
[25]   Cominimaxness of generalized local cohomology modules [J].
Roshan-Shekalgourabi, Hajar ;
Hassanzadeh-lelekaami, Dawood .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2025, 32 (01) :81-92
[26]   MTame Modules And Local Gabriel Correspondence [J].
Castro Perez, Jaime ;
Rios Montes, Jose .
COMMUNICATIONS IN ALGEBRA, 2015, 43 (10) :4471-4486
[27]   On the cofiniteness of Artinian local cohomology modules [J].
Ghasemi, Ghader ;
Bahmanpour, Kamal ;
A'zami, Jafar .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2016, 15 (04)
[28]   L-2-PRIME AND DIMENSIONAL MODULES [J].
Vedadi, M. R. .
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2010, 7 :47-58
[29]   ON THE FINITENESS OF BASS NUMBERS OF LOCAL COHOMOLOGY MODULES [J].
Abazari, Nemat ;
Bahmanpour, Kamal .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (04) :783-791
[30]   A generalization of baer's lower nilradical for modules [J].
Behboodi, Mahmood .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2007, 6 (02) :337-353