Semiprime and weakly compressible modules

被引:0
作者
Dehghani, N. [1 ]
Vedadi, M. R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan, Iran
来源
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | 2016年 / 45卷 / 02期
关键词
Krull dimension; semiprime module; singular semi-Artinian ring; weakly compressible module;
D O I
10.15672/HJMS.20164512503
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An R-module M is called semiprime (resp. weakly compressible) if it is cogenerated by each of its essential submodules (resp. Hom(R) (M, N) N is nonzero for every 0 not equal N <= M-R). We carry out a study of weakly compressible (semiprime) modules and show that there exist semiprime modules which are not weakly compressible. Weakly compressible modules with enough critical submodules are characterized in different ways. For certain rings R, including prime hereditary Noetherian rings, it is proved that M-R is weakly compressible (resp. semiprime) if and only if M is an element of Cog (Soc(M) circle plus R) and M / Soc (M) is an element of Cog (R) (resp. M is an element of Cog (Soc(M) circle plus R)). These considerations settle two questions, namely Qu 1, and Qu 2, in [6, p 92].
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条