Derived invariants from topological Hochschild homology
被引:2
作者:
Antieau, Benjamin
论文数: 0引用数: 0
h-index: 0
机构:
Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USANorthwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
Antieau, Benjamin
[1
]
Bragg, Daniel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USANorthwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
Bragg, Daniel
[2
]
机构:
[1] Northwestern Univ, Dept Math, 2033 Sheridan Rd, Evanston, IL 60208 USA
[2] Univ Calif Berkeley, Dept Math, 970 Evans Hall, Berkeley, CA 94720 USA
来源:
ALGEBRAIC GEOMETRY
|
2022年
/
9卷
/
03期
基金:
美国国家科学基金会;
关键词:
derived equivalence;
Hodge numbers;
the de Rham-Witt complex;
dominoes;
K-THEORY;
VARIETIES;
DEGENERATION;
CATEGORIES;
ALGEBRAS;
SURFACES;
TORSION;
THEOREM;
COMPLEX;
D O I:
10.14231/AG-2022-011
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider derived invariants of varieties in positive characteristic arising from topological Hochschild homology. Using theory developed by Ekedahl and Illusie-Raynaud in their study of the slope spectral sequence, we examine the behavior under derived equivalences of various p-adic quantities related to Hodge-Witt and crystalline cohomology groups, including slope numbers, domino numbers, and Hodge-Witt numbers. As a consequence, we obtain restrictions on the Hodge numbers of derived equivalent varieties, partially extending results of Popa-Schnell to positive characteristic.