Error bounds and metric subregularity

被引:68
|
作者
Kruger, Alexander Y. [1 ]
机构
[1] Federat Univ Australia, Sch Sci Informat Technol & Engn, Ctr Informat & Appl Optimisat, Ballarat, Vic, Australia
基金
澳大利亚研究理事会;
关键词
54C60; 49J52; 47H04; 58C06; 49J53; error bounds; metric subregularity; metric regularity; slope; calmness; LOWER SEMICONTINUOUS FUNCTIONS; OPTIMALITY CONDITIONS; SUFFICIENT CONDITIONS; REGULARITY; CALMNESS; STABILITY; INCLUSIONS; MAPPINGS; SYSTEMS;
D O I
10.1080/02331934.2014.938074
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Necessary and sufficient criteria for metric subregularity (or calmness) of set-valued mappings between general metric or Banach spaces are treated in the framework of the theory of error bounds for a special family of extended real-valued functions of two variables. A classification scheme for the general error bound and metric subregularity criteria is presented. The criteria are formulated in terms of several kinds of primal and subdifferential slopes.
引用
收藏
页码:49 / 79
页数:31
相关论文
共 50 条
  • [1] Error Bounds and Holder Metric Subregularity
    Kruger, Alexander Y.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2015, 23 (04) : 705 - 736
  • [2] Nonlinear Metric Subregularity
    Kruger, Alexander Y.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 171 (03) : 820 - 855
  • [3] Error Bounds and Hölder Metric Subregularity
    Alexander Y. Kruger
    Set-Valued and Variational Analysis, 2015, 23 : 705 - 736
  • [4] Nonlinear Metric Subregularity
    Alexander Y. Kruger
    Journal of Optimization Theory and Applications, 2016, 171 : 820 - 855
  • [5] FIRST ORDER AND SECOND ORDER CHARACTERIZATIONS OF METRIC SUBREGULARITY AND CALMNESS OF CONSTRAINT SET MAPPINGS
    Gfrerer, Helmut
    SIAM JOURNAL ON OPTIMIZATION, 2011, 21 (04) : 1439 - 1474
  • [6] PERTURBATION ANALYSIS OF METRIC SUBREGULARITY FOR MULTIFUNCTIONS
    Zheng, Xi Yin
    Ng, Kung Fu
    SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (03) : 2429 - 2454
  • [7] On Directional Metric Regularity, Subregularity and Optimality Conditions for Nonsmooth Mathematical Programs
    Gfrerer, Helmut
    SET-VALUED AND VARIATIONAL ANALYSIS, 2013, 21 (02) : 151 - 176
  • [8] Pseudo metric subregularity and its stability in Asplund spaces
    Zhang, Binbin
    Zhu, Jiangxing
    POSITIVITY, 2021, 25 (02) : 469 - 494
  • [9] Directional Holder Metric Subregularity and Application to Tangent Cones
    Huynh Van Ngai
    Nguyen Huu Tron
    Phan Nhat Tinh
    JOURNAL OF CONVEX ANALYSIS, 2017, 24 (02) : 417 - 457
  • [10] The Radius of Metric Subregularity
    Dontchev, Asen L.
    Gfrerer, Helmut
    Kruger, Alexander Y.
    Outrata, Jiri V.
    SET-VALUED AND VARIATIONAL ANALYSIS, 2020, 28 (03) : 451 - 473