Transition from circular to stellate forms of submarine volcanoes

被引:61
作者
Mitchell, NC [1 ]
机构
[1] Univ Oxford, Dept Earth Sci, Oxford OX1 3PR, England
关键词
D O I
10.1029/2000JB900263
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Large volcanic islands and guyots have stellate forms that reflect the relief of radiating volcanic rift zones, multiple volcanic centers, and embayments due to giant flank failures. Small mid-ocean ridge volcanoes, in contrast, are commonly subcircular in plan view and show only embryonic rift zones. In order to characterize the transition between these two end-members the morphology of 141 seamounts and guyots was studied using the shape of the depth contour at half the height of each edifice. Irregularity was characterized by measuring perimeter distance, elongation, and moment of inertia of the contours, assuming an "ideal" edifice is circular. The analysis reveals a general transition over 2-4 km edifice height (best transition estimate 3 km), while some large edifices 4-5 km high show no major embayments or ridges, suggesting considerable variation in the effectiveness of mechanisms that cause flank instability and growth of I ift zones. The various origins of the transition are discussed, and the upper limit of magma chambers, many of which lie above the basement of the larger edifices, is proposed to affect the morphologic complexity via a number of mechanisms and is an important factor affecting the mode of growth. The origins of the truncated cone shape of mid-ocean ridge volcanoes are also discussed. Of the eruption mechanisms that have been proposed to explain their flat summits, the most likely mechanisms involve eruption from small ephemeral magma bodies lying within the low-density upper oceanic crust. The discussion includes speculations on factors affecting the depths of magma chambers beneath oceanic volcanoes.
引用
收藏
页码:1987 / 2003
页数:17
相关论文
共 125 条
[1]   SEAMOUNT ABUNDANCES AND DISTRIBUTIONS IN THE SOUTHEAST PACIFIC [J].
ABERS, GA ;
PARSONS, B ;
WEISSEL, JK .
EARTH AND PLANETARY SCIENCE LETTERS, 1988, 87 (1-2) :137-151
[2]  
ALLAN JF, 1987, GEOPHYS MONOGR SER, V43, P255, DOI DOI 10.1029/GM043P0255
[3]  
[Anonymous], SCOTLAND TERTIARY VO
[4]  
[Anonymous], J GEOPHYS RES
[5]  
[Anonymous], GEOCHEMICAL SOC SPEC
[6]  
[Anonymous], 1998, MAR GEODES, DOI DOI 10.1080/01490419809388129
[7]   SINGLE PLUME MODEL FOR ASYNCHRONOUS FORMATION OF THE LAMONT SEAMOUNTS AND ADJACENT EAST PACIFIC RISE TERRAINS [J].
BARONE, AM ;
RYAN, WBF .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH AND PLANETS, 1990, 95 (B7) :10801-10827
[8]  
BATIZA R, 1989, MAR GEOPHYS RES, V11, P169
[9]   VOLCANIC DEVELOPMENT OF SMALL OCEANIC CENTRAL VOLCANOS ON THE FLANKS OF THE EAST PACIFIC RISE INFERRED FROM NARROW-BEAM ECHO-SOUNDER SURVEYS [J].
BATIZA, R ;
VANKO, D .
MARINE GEOLOGY, 1983, 54 (1-2) :53-90
[10]   CRATERS, CALDERAS, AND HYALOCLASTITES ON YOUNG PACIFIC SEAMOUNTS [J].
BATIZA, R ;
FORNARI, DJ ;
VANKO, DA ;
LONSDALE, P .
JOURNAL OF GEOPHYSICAL RESEARCH, 1984, 89 (NB10) :8371-8390