Edge lifting and Roman domination in graphs

被引:0
|
作者
Meraimi, Hicham [1 ]
Chellali, Mustapha [2 ]
机构
[1] Univ Sci & Technol Houari Boumediene USTHB, Fac Math, Lab LIFORCE, Algiers, Algeria
[2] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
关键词
Edge splitting; edge lifting; Roman domination;
D O I
10.1142/S1793830921500646
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph, and let uxv be an induced path centered at x. An edge lift defined on uxv is the action of removing edges ux and vx while adding the edge uv to the edge set of G. In this paper, we initiate the study of the effects of edge lifting on the Roman domination number of a graph, where various properties are established. A characterization of all trees for which every edge lift increases the Roman domination number is provided. Moreover, we characterize the edge lift of a graph decreasing the Roman domination number, and we show that there are no graphs with at most one cycle for which every possible edge lift can have this property.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Edge lifting and total domination in graphs
    Wyatt J. Desormeaux
    Teresa W. Haynes
    Michael A. Henning
    Journal of Combinatorial Optimization, 2013, 25 : 47 - 59
  • [2] Edge lifting and total domination in graphs
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2013, 25 (01) : 47 - 59
  • [3] Vertex and edge critical Roman domination in graphs
    Rad, Nader Jafari
    Hansberg, Adriana
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2013, 92 : 73 - 88
  • [4] SOME RESULTS ON ROMAN DOMINATION EDGE CRITICAL GRAPHS
    Chellali, Mustapha
    Rad, Nader Jafari
    Volkmann, Lutz
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2012, 9 (02) : 195 - 203
  • [5] Roman domination stable graphs upon edge-addition
    Chellali, Mustapha
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2015, 96 : 165 - 178
  • [6] Roman domination edge critical graphs having precisely two cycles
    Rad, Nader Jafari
    ARS COMBINATORIA, 2017, 131 : 355 - 372
  • [7] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [8] Signed Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Henning, Michael A.
    Loewenstein, Christian
    Zhao, Yancai
    Samodivkin, Vladimir
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 241 - 255
  • [9] On [k] -Roman domination in graphs
    Khalili, N.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (03) : 291 - 299
  • [10] Quadruple Roman domination in graphs
    Amjadi, J.
    Khalili, N.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)