共 50 条
Superposed metric for spinning black hole binaries approaching merger
被引:17
|作者:
Combi, Luciano
[1
,2
]
Armengol, Federico G. Lopez
[2
]
Campanelli, Manuela
[2
]
Ireland, Brennan
[2
,3
]
Noble, Scott C.
[4
]
Nakano, Hiroyuki
[5
]
Bowen, Dennis
[6
,7
]
机构:
[1] CCT La Plata, CONICET CIC, Inst Argentino Radioastron IAR, CC 5, RA-1984 Villa Elisa, Buenos Aires, Argentina
[2] Rochester Inst Technol, Ctr Computat Relat & Gravitat, Rochester, NY 14623 USA
[3] US Agcy Int Dev, 1300 Penn Ave NW, Washington, DC 20004 USA
[4] Goddard Space Flight Ctr, Gravitat Astrophys Lab, Greenbelt, MD 20771 USA
[5] Ryukoku Univ, Fac Law, Kyoto 6128577, Japan
[6] Los Alamos Natl Lab, Ctr Theoret Astrophys, POB 1663, Los Alamos, NM 87545 USA
[7] Los Alamos Natl Lab, X Computat Phys, POB 1663, Los Alamos, NM 87545 USA
关键词:
ELECTROMAGNETIC LUMINOSITY;
GALAXY MERGERS;
ACCRETION DISK;
MASS;
D O I:
10.1103/PhysRevD.104.044041
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We construct an approximate metric that represents the spacetime of spinning binary black holes (BBH) approaching merger. We build the metric as an analytical superposition of two Kerr metrics in harmonic coordinates, where we transform each black hole term with time-dependent boosts describing an inspiral trajectory. The velocities and trajectories of the boost are obtained by solving the post-Newtonian (PN) equations of motion at 3.5 PN order. We analyze the spacetime scalars of the new metric and we show that it is an accurate approximation of Einstein's field equations in vacuum for a BBH system in the inspiral regime. Furthermore, to prove the effectiveness of our approach, we test the metric in the context of a 3D general relativistic magnetohydrodynamical (GRMHD) simulation of accreting minidisks around the black holes. We compare our results with a previous well-tested spacetime construction based on the asymptotic matching method. We conclude that our new spacetime is well-suited for long-term GRMHD simulations of spinning binary black holes on their way to the merger.
引用
收藏
页数:17
相关论文