Recent advances in electron acceptors with ladder-type backbone for organic solar cells

被引:59
作者
Jiang, Zuo-Quan [1 ]
Wang, Tong-Tong [1 ]
Wu, Fu-Peng [1 ]
Lin, Jiu-Dong [1 ]
Liao, Liang-Sheng [1 ]
机构
[1] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
NON-FULLERENE ACCEPTOR; OPEN-CIRCUIT VOLTAGE; SMALL-MOLECULE ACCEPTOR; LOW-ENERGY LOSS; POWER CONVERSION EFFICIENCY; NONFULLERENE ACCEPTORS; 10-PERCENT EFFICIENCY; PHOTOVOLTAIC PERFORMANCE; SIMULTANEOUS ENHANCEMENT; SEMICONDUCTING POLYMERS;
D O I
10.1039/c8ta05440a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ladder-type non-fullerene acceptors have developed very rapidly since 2015 as they have tunable structure, a broad absorption region and good morphology control. The power conversion efficiency (PCE) of non-fullerene organic solar cells (NF-OSC) increased from below 6% to over 13% and, in this review, we analyze the fundamental concepts of organic bulk heterojunction (BHJ) solar cells and different building blocks of non-fullerene acceptors to have an overview of high-performance photovoltaic materials. Meanwhile, we also discuss several design guidelines for chemical construction and modification, which primarily focus on backbone variations, side-chain engineering, and end-cap group substitution. The PCE of several backbones, such as IDT, IDTT, BDCPDT, etc. have successfully exceeded 10% PCE, which demonstrates great potential for future optimization. Side-chains can affect intermolecular packing by forming a 3-D conformation along with the rigid backbones. End-cap groups can regulate electronic properties of the acceptors directly and provide the main electron-transport channels which influence frontier orbital properties. Although design principles and mechanistic understanding of ladder-type acceptors have been explored, there are also many opportunities and challenges of device mechanisms and molecular optimization which need to have deep study and investigation. We hope this review will assist readers to better understand the design principles of high-performance photovoltaic materials, molecular design, and structure-property relationships.
引用
收藏
页码:17256 / 17287
页数:32
相关论文
共 228 条
[1]   Printable anodes for flexible organic solar cell modules [J].
Aernouts, T ;
Vanlaeke, P ;
Geens, W ;
Poortmans, J ;
Heremans, P ;
Borghs, S ;
Mertens, R ;
Andriessen, R ;
Leenders, L .
THIN SOLID FILMS, 2004, 451 :22-25
[2]   Small-Molecule, Nonfullerene Acceptors for Polymer Bulk Heterojunction Organic Photovoltaics [J].
Anthony, John E. .
CHEMISTRY OF MATERIALS, 2011, 23 (03) :583-590
[3]   Nonfullerene acceptors based on extended fused rings flanked with benzothiadiazolyl-methylenemalononitrile for polymer solar cells [J].
Bai, Huitao ;
Wu, Yao ;
Wang, Yifan ;
Wu, Yang ;
Li, Rong ;
Cheng, Pei ;
Zhang, Mingyu ;
Wang, Jiayu ;
Ma, Wei ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (41) :20758-20766
[4]   An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells [J].
Bai, Huitao ;
Wang, Yifan ;
Cheng, Pei ;
Wang, Jiayu ;
Wu, Yao ;
Hou, Jianhui ;
Zhan, Xiaowei .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (05) :1910-1914
[5]   Chemistry of naphthalene diimides [J].
Bhosale, Sheshanath V. ;
Jani, Chintan H. ;
Langford, Steven J. .
CHEMICAL SOCIETY REVIEWS, 2008, 37 (02) :331-342
[6]   Medium Bandgap Polymer Donor Based on Bi(trialkylsilylthienyl-benzo[1,2-b:4,5-b′]-difuran) for High Performance Nonfullerene Polymer Solar Cells [J].
Bin, Haijun ;
Zhong, Lian ;
Yang, Yankang ;
Gao, Liang ;
Huang, He ;
Sun, Chenkai ;
Li, Xiaojun ;
Xue, Lingwei ;
Zhang, Zhi-Guo ;
Zhang, Zhanjun ;
Li, Yongfang .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[7]   9.73% Efficiency Nonfullerene All Organic Small Molecule Solar Cells with Absorption-Complementary Donor and Acceptor [J].
Bin, Haijun ;
Yang, Yankang ;
Zhang, Zhi-Guo ;
Ye, Long ;
Ghasem, Masoud ;
Chen, Shanshan ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Sun, Chenkai ;
Xue, Lingwei ;
Yang, Changduk ;
Ade, Harald ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (14) :5085-5094
[8]   11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor [J].
Bin, Haijun ;
Gao, Liang ;
Zhang, Zhi-Guo ;
Yang, Yankang ;
Zhang, Yindong ;
Zhang, Chunfeng ;
Chen, Shanshan ;
Xue, Lingwei ;
Yang, Changduk ;
Xiao, Min ;
Li, Yongfang .
NATURE COMMUNICATIONS, 2016, 7
[9]   Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency [J].
Bin, Haijun ;
Zhang, Zhi-Guo ;
Gao, Liang ;
Chen, Shanshan ;
Zhong, Lian ;
Xue, Lingwei ;
Yang, Changduk ;
Li, Yongfang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2016, 138 (13) :4657-4664
[10]   22.8-PERCENT EFFICIENT SILICON SOLAR-CELL [J].
BLAKERS, AW ;
WANG, A ;
MILNE, AM ;
ZHAO, JH ;
GREEN, MA .
APPLIED PHYSICS LETTERS, 1989, 55 (13) :1363-1365