Thermal relaxation of lithium dendrites

被引:74
作者
Aryanfar, Asghar [1 ]
Brooks, Daniel J. [2 ]
Colussi, Agustin J. [1 ]
Merinov, Boris V. [2 ]
Goddard, William A., III [2 ]
Hoffmann, Michael R. [1 ]
机构
[1] CALTECH, Linde Ctr Global Environm Sci, Pasadena, CA 91125 USA
[2] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
关键词
IN-SITU; LIQUID ELECTROLYTES; ELECTROCHEMICAL DEPOSITION; RECHARGEABLE BATTERIES; SURFACE-DIFFUSION; GROWTH; ELECTRODEPOSITION; DENSITY; MORPHOLOGY; DYNAMICS;
D O I
10.1039/c4cp05786d
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The average lengths (lambda) over bar of lithium dendrites produced by charging symmetric Li-0 batteries at various temperatures are matched by Monte Carlo computations dealing both with Li+ transport in the electrolyte and thermal relaxation of Li-0 electrodeposits. We found that experimental (lambda) over bar (T) variations cannot be solely accounted by the temperature dependence of Li+ mobility in the solvent but require the involvement of competitive Li-atom transport from metastable dendrite tips to smoother domains over Delta E-R(double dagger) similar to 20 kJ mol(-1) barriers. A transition state theory analysis of Li-atom diffusion in solids yields a negative entropy of activation for the relaxation process: Delta S-R(double dagger) approximate to -46 J mol(-1) K-1 that is consistent with the transformation of amorphous into crystalline Li-0 electrodeposits. Significantly, our Delta E-R(double dagger) similar to 20 kJ mol(-1) value compares favorably with the activation barriers recently derived from DFT calculations for self-diffusion on Li-0(001) and (111) crystal surfaces. Our findings suggest a key role for the mobility of interfacial Li-atoms in determining the morphology of dendrites at temperatures above the onset of surface reconstruction: T-SR approximate to 0.65 T-MB (T-MB = 453 K: the melting point of bulk Li-0).
引用
收藏
页码:8000 / 8005
页数:6
相关论文
共 83 条
[1]   Mathematical model of the dendritic growth during lithium electrodeposition [J].
Akolkar, Rohan .
JOURNAL OF POWER SOURCES, 2013, 232 :23-28
[2]   THEORY OF CLASSICAL SURFACE-DIFFUSION [J].
ALANISSILA, T ;
YING, SC .
PROGRESS IN SURFACE SCIENCE, 1992, 39 (03) :227-323
[3]   The density and surface tension of liquid lithium at melting temperature [J].
Alchagirov, B. B. ;
Afaunova, L. Kh. ;
Dyshekova, F. F. ;
Mozgovoi, A. G. ;
Taova, T. M. ;
Arkhestov, R. Kh. .
HIGH TEMPERATURE, 2009, 47 (02) :287-291
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]  
Aryanfar A., 2014, US Pat.,, Patent No. [14/201,979, 14201979]
[6]   Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries [J].
Aryanfar, Asghar ;
Brooks, Daniel J. ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (45) :24965-24970
[7]   Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations [J].
Aryanfar, Asghar ;
Brooks, Daniel ;
Merinov, Boris V. ;
Goddard, William A., III ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (10) :1721-1726
[8]   ELECTROLYTIC GROWTH OF DENDRITES FROM IONIC SOLUTIONS [J].
BARTON, JL ;
BOCKRIS, JO .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 268 (1335) :485-&
[9]   Theory of Chemical Kinetics and Charge Transfer based on Nonequilibrium Thermodynamics [J].
Bazant, Martin Z. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1144-1160
[10]  
Bergman T.L., 2011, Introduction to Heat Transfer, VSixth