A mass transportation approach to quantitative isoperimetric inequalities

被引:248
作者
Figalli, A. [1 ]
Maggi, F. [2 ]
Pratelli, A. [3 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Firenze, Dipartimento Matemat U Dini, I-50134 Florence, Italy
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
SOBOLEV INEQUALITY; SHARP SOBOLEV; MINKOWSKI; UNIQUENESS; STABILITY; SURFACE; THEOREM;
D O I
10.1007/s00222-010-0261-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov's proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for convex sets is proved as a corollary.
引用
收藏
页码:167 / 211
页数:45
相关论文
共 47 条
[1]  
Alberti G, 1999, MATH Z, V230, P259, DOI 10.1007/PL00004691
[2]  
Ambrosio L., 2000, Oxford Mathematical Monographs
[3]  
AMBROSIO L, 2001, J EUR MATH SOC, V3, P39, DOI [10.1007/PL00011302, DOI 10.1007/PL00011302]
[4]  
[Anonymous], 1985, SOBOLEV INEQUALITIES
[5]  
Aubin T., 1976, J. Diff. Geom., V11, P573
[6]   On the isoperimetric property of the circle on the surface of the sphere and in the plane. [J].
Bernstein, F .
MATHEMATISCHE ANNALEN, 1905, 60 :117-136
[7]   A NOTE ON THE SOBOLEV INEQUALITY [J].
BIANCHI, G ;
EGNELL, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :18-24
[8]   The isoperimetric deficit of planar figures [J].
Bonnesen, T .
MATHEMATISCHE ANNALEN, 1924, 91 :252-268
[10]  
BROTHERS JE, 1994, MICH MATH J, V41, P419