Connectedness of cone superefficient point sets in locally convex topological vector spaces

被引:38
作者
Hu, YD [1 ]
Ling, C
机构
[1] Wenzhou Univ, Sch Math & Informat Sci, Wenzhou, Peoples R China
[2] Zhejiang Inst Finance & Econ, Dept Fundamental Sci, Hangzhou, Peoples R China
关键词
cone efficient point set; cone superefficient point set; cone weakly compact set; connectedness;
D O I
10.1023/A:1026412918497
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper studies the connectedness of the cone super-efficient point set in locally convex topological vector spaces. First, we prove a scalarization theorem for a cone superefficient point set. From this result, we obtain the connectedness of a cone superefficient point set under the conditions that the set is cone convex and cone weakly compact.
引用
收藏
页码:433 / 446
页数:14
相关论文
共 13 条
[1]   Connectedness of the efficient set for strictly quasiconcave sets [J].
Benoist, J .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (03) :627-654
[2]   STRUCTURE OF ADMISSIBLE POINTS WITH RESPECT TO CONE DOMINANCE [J].
BITRAN, GR ;
MAGNANTI, TL .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 29 (04) :573-614
[3]  
Borwein J. M., 1991, ZOR, Methods and Models of Operations Research, V35, P175, DOI 10.1007/BF01415905
[4]   SUPER EFFICIENCY IN VECTOR OPTIMIZATION [J].
BORWEIN, JM ;
ZHUANG, D .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 338 (01) :105-122
[5]  
Brown R., 1988, TOPOLOGY
[6]  
Gong X. H., 1996, Mathematical Methods of Operations Research, V44, P135, DOI 10.1007/BF01246333
[7]  
Kelley J. L., 1963, LINEAR TOPOLOGICAL S, P26
[8]  
LUC DT, 1985, P AM MATH SOC, V95, P433
[10]  
PAGAGEORGIOU NS, 1985, NUMERICAL FUNCTIONAL, V8, P83