Corrosion of TiN, (TiAl)N and CrN hard coatings produced by magnetron sputtering

被引:65
作者
Cunha, L
Andritschky, M
Rebouta, L
Silva, R
机构
[1] Univ Minho, Dept Fis, P-4719 Braga, Portugal
[2] Inst Super Engn Porto, P-4200 Oporto, Portugal
关键词
hard coatings; corrosion; magnetron sputtering;
D O I
10.1016/S0040-6090(97)00624-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metallic components like moulds, dies and machinery can be subjected to intensive degradation during plastic transformation processes, namely when working with fibre filler materials and plastics which release F, S or Cl during transformation. The degradation is attributed to the combined erosive and abrasive wear by the filler material and corrosive attack of agents. This degradation reduces the lifetime of the components considerably and has a direct impact on process productivity and surface finish of the final products. Nitride-based hard coatings like TiN, (TiAl)N, BN, etc. have proved their capability to increase tool lifetime when exposed to abrasive and corrosive environments found in plastic transformation processes (halogenated polymers, acrylics, polyesters, fibre reinforced plastics, etc.). Within the frame of this work we produced TiN, (TiAl)N, CrN hard coatings, with and without a metallic interlayer, by de and rf reactive magnetron sputtering, with a thickness of about 2 mu m. The aqueous corrosion behaviour of the coatings was studied in saline and acidic environments by potentiodynamic and open circuit potential (OCP) measurements. The oxidation resistance during annealing in air was also studied. In saline (NaCl 9%) and acid (HCl 3.4%) environments we found that a metallic interlayer of Ti or Cr in the case of TiN-(TiAl)N-coated samples and CrN-coated samples, respectively, generally improve the corrosion resistance. Best results for all tested nitride coated samples were obtained for the Ti0.27Al0.73N coating. The OCP vs. Saturated Calomel Electrode (SCE) (60 min) measurements indicated that most samples were nobler than the un-coated substrate. The mentioned potentials depend on the deposition conditions and the film microstructure. Most of the coatings lose some of their protective capabilities after an high temperature annealing. In contrast to the Ti-based hard coatings, the corrosion resistance of CrN is improved by a 800 degrees C annealing treatment in air. (C) 1998 Elsevier Science S.A.
引用
收藏
页码:351 / 355
页数:5
相关论文
共 9 条
  • [1] Fontana M., 1987, CORROSION ENG, V3rd
  • [2] Judd DB., 1975, Color in business, science, and industry /
  • [3] MCDONALD R, 1987, COLOUR PHYSICS IND S
  • [4] TRIBOLOGICAL PROPERTIES OF RF-SPUTTERED TITANIUM-BASED HARD COATINGS AND THEIR BEHAVIOR UNDER PLASTICS-PROCESSING CONDITIONS
    PALLER, G
    MATTHES, B
    HERR, W
    BROSZEIT, E
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1991, 140 (1-2): : 647 - 654
  • [5] Rebouta L, 1995, SURF COAT TECH, V76, P70, DOI 10.1016/0257-8972(95)02501-4
  • [6] REBOUTA L, IN PRESS
  • [7] A COMPARISON OF THE CORROSION BEHAVIOR AND HARDNESS OF STEEL SAMPLES (100CR6) COATED WITH TITANIUM NITRIDE AND CHROMIUM NITRIDE BY DIFFERENT INSTITUTIONS USING DIFFERENT DEPOSITION TECHNIQUES
    SCHROER, A
    ENSINGER, W
    WOLF, GK
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1991, 140 : 625 - 630
  • [8] WARD LP, 1995, P EUR ADV MAT PROC C, P79
  • [9] Wyszecki G., 1967, COLOR SCI CONCEPTS M