Stochastic-Galerkin Finite-Difference Time-Domain for Waves in Random Layered Media

被引:0
作者
Huang, Der-Han [1 ]
Cangellaris, Andreas C. [1 ]
Chen, Xu [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61820 USA
来源
2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020) | 2020年
基金
美国国家科学基金会;
关键词
Computational electromagnetic; finite-difference time-domain (FDTD); uncertainty quantification; polynomial chaos; uncertainty analysis; random media; UNCERTAINTY QUANTIFICATION;
D O I
10.1109/NEMO49486.2020.9343635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors introduce a Stochastic Finite-Difference Time Domain solver formulation based on Stochastic Galerkin Method. The solver can calculate the statistics of the wave in time domain, including mean, standard deviation at each time step. The method uses a single simulation of an expanded system, without the need for repeated simulations like Monte Carlo analysis. We demonstrate the method is accurate for computing random total waves in layered media with Gaussian random permittivity and conductivity. We also demonstrate the method for simulating materials with Bernoulli distributed random profiles, which is used to model material that may or may not exist. Results accuracy and computation time compare favorably to Monte Carlo simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Investigating of different arrangement configurations of phosphor particles by using the Finite-Difference Time-Domain method
    Shao, Changkun
    Wu, Kejian
    Li, Zongtao
    Yu, Binhai
    Ding, Xinrui
    [J]. ICEPT2019: THE 2019 20TH INTERNATIONAL CONFERENCE ON ELECTRONIC PACKAGING TECHNOLOGY, 2019,
  • [42] Boltzmann Finite-Difference Time-Domain Method Research Electromagnetic Wave Oblique Incidence into Plasma
    Liu, Jian-Xiao
    Yang, Ze-Kun
    Ju, Lu
    Pan, Lei-Qing
    Xu, Zhi-Gang
    Yang, Hong-Wei
    [J]. PLASMONICS, 2018, 13 (05) : 1699 - 1704
  • [43] A study on the stability of bipolar-junction-transistor formulation in finite-difference time-domain framework
    Kung, F
    Chuah, HT
    [J]. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (04) : 1189 - 1196
  • [44] Evaluation of Cable SGEMP Response Using Monte Carlo and Finite-Difference Time-Domain Methods
    Xu, Zhiqian
    Meng, Cui
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (11) : 2829 - 2836
  • [45] Yuma proving grounds GPR signatures in comparison with finite-difference time-domain target models
    Merchant, BL
    Happ, L
    [J]. RADAR SENSOR TECHNOLOGY, 1996, 2747 : 214 - 220
  • [46] A Novel Scheme for High Performance Finite-Difference Time-Domain (FDTD) Computations Based on GPU
    Chu, Tianshu
    Dai, Jian
    Qian, Depei
    Fang, Weiwei
    Liu, Yi
    [J]. ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, PT 1, PROCEEDINGS, 2010, 6081 : 441 - +
  • [47] Optimum Loss Factor for a Perfectly Matched Layer in Finite-Difference Time-Domain Acoustic Simulation
    Mokhtari, Parham
    Takemoto, Hironori
    Nishimura, Ryouichi
    Kato, Hiroaki
    [J]. IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2010, 18 (05): : 1068 - 1071
  • [48] A Radially-Dependent Dispersive Finite-Difference Time-Domain Method for the Evaluation of Electromagnetic Cloaks
    Argyropoulos, Christos
    Zhao, Yan
    Hao, Yang
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (05) : 1432 - 1441
  • [49] Finite-Difference Time-Domain Simulation of Localized Surface Plasmon Resonance Adsorption by Gold Nanoparticles
    Lin, Wen-Chi
    Lin, Wen-Chen
    Tsai, Chung-Lun
    Lin, Kang-Ping
    [J]. 7TH WACBE WORLD CONGRESS ON BIOENGINEERING 2015, 2015, 52 : 138 - 141
  • [50] The stochastic Galerkin scaled boundary finite element method on random domain
    Duy Minh Do
    Gao, Wei
    Saputra, Albert A.
    Song, Chongmin
    Leong, Chi Hang
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2017, 110 (03) : 248 - 278