Stochastic-Galerkin Finite-Difference Time-Domain for Waves in Random Layered Media

被引:0
|
作者
Huang, Der-Han [1 ]
Cangellaris, Andreas C. [1 ]
Chen, Xu [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61820 USA
来源
2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020) | 2020年
基金
美国国家科学基金会;
关键词
Computational electromagnetic; finite-difference time-domain (FDTD); uncertainty quantification; polynomial chaos; uncertainty analysis; random media; UNCERTAINTY QUANTIFICATION;
D O I
10.1109/NEMO49486.2020.9343635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors introduce a Stochastic Finite-Difference Time Domain solver formulation based on Stochastic Galerkin Method. The solver can calculate the statistics of the wave in time domain, including mean, standard deviation at each time step. The method uses a single simulation of an expanded system, without the need for repeated simulations like Monte Carlo analysis. We demonstrate the method is accurate for computing random total waves in layered media with Gaussian random permittivity and conductivity. We also demonstrate the method for simulating materials with Bernoulli distributed random profiles, which is used to model material that may or may not exist. Results accuracy and computation time compare favorably to Monte Carlo simulations.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Uncertainty Analyses in the Finite-Difference Time-Domain Method
    Edwards, Robert S.
    Marvin, Andrew C.
    Porter, Stuart J.
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2010, 52 (01) : 155 - 163
  • [2] Finite-difference time-domain simulation of scattering from objects in continuous random media
    Moss, CD
    Teixeira, FL
    Yang, YE
    Kong, JA
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (01): : 178 - 186
  • [3] ELECTROMAGNETIC SCATTERING OF WAVES BY RANDOM ROUGH-SURFACE - A FINITE-DIFFERENCE TIME-DOMAIN APPROACH
    CHAN, CH
    LOU, SH
    TSANG, L
    KONG, JA
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1991, 4 (09) : 355 - 359
  • [4] Finite-Difference Time-Domain Simulations of Radon Transport in Porous Media
    Tayebi, A.
    Bezzout, H.
    El Maghraoui, M.
    El Faylali, H.
    ATOM INDONESIA, 2020, 46 (03) : 171 - 175
  • [5] On the analysis of resonators using finite-difference time-domain techniques
    Wagner, CL
    Schneider, JB
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (10) : 2885 - 2890
  • [6] An unconditionally stable scheme for the finite-difference time-domain method
    Chung, YS
    Sarkar, TK
    Jung, BH
    Salazar-Palma, M
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (03) : 697 - 704
  • [7] Modeling of nonlinear optical media with the TLM-based finite-difference - Time-domain method
    Chen, ZZ
    Xu, J
    Chuang, JM
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 1996, 13 (05) : 259 - 264
  • [8] Quadratic recursive convolution (QRC) in dispersive media simulation of finite-difference time-domain (FDTD)
    Ji, Jinzu
    Tong, Kin-Fai
    Xue, Hui
    Huang, Peilin
    OPTIK, 2017, 138 : 542 - 549
  • [9] A stochastic contour path finite-difference time-domain method for uncertainty analysis of metal slot size
    Wang, Xutong
    Zhou, Yifu
    Mao, Congguang
    Wang, Wenbing
    Qin, Feng
    Zhao, Mo
    Wu, Wei
    IET MICROWAVES ANTENNAS & PROPAGATION, 2023, 17 (08) : 677 - 683
  • [10] Dispersive Periodic Boundary Conditions for Finite-Difference Time-Domain Method
    ElMahgoub, Khaled
    Elsherbeni, Atef Z.
    Yang, Fan
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2012, 60 (04) : 2118 - 2122