Energy-Efficient Computational Offloading for Secure NOMA-Enabled Mobile Edge Computing Networks

被引:0
|
作者
Wang, Haiping [1 ]
机构
[1] Taizhou Vocat Coll Sci & Technol, Sch Mechatron & Mould Engn, Taizhou 318020, Zhejiang, Peoples R China
关键词
RESOURCE-ALLOCATION; RATE MAXIMIZATION; COMMUNICATION; DESIGN;
D O I
10.1155/2022/5230594
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Computational offloading and nonorthogonal multiple access (NOMA) are two promising technologies for alleviating the problems of limited battery capacity, insufficient computational capability, and massive deployment of terminal equipment in the Internet of Things (IoT) era. However, offloading data may be threatened by malicious eavesdroppers, which leads to more energy consumptions to avoid being eavesdropped. In this work, we study the energy-efficient way of computational offloading under the condition of certain security requirement in a secure NOMA-enabled mobile-edge computing (MEC) networks, where K end users are intended to offload their data to the N-antenna access point (AP) through the same resource block under the threat of an eavesdropper. We first address energy-efficient local resource allocation by minimizing sum-energy consumption of end users, subject to CPU frequencies, offloading bits, secrecy offloading rate, and transmit power. We then optimize the local resources to obtain the minimum computation latency of task for each end user, with the constraint of certain energy budget. The solutions to the above two optimization problems are given and demonstrated numerically by a 3-user scenario.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Joint Task Offloading and Resource Allocation for NOMA-Enabled Multi-Access Mobile Edge Computing
    Song, Zhengyu
    Liu, Yuanwei
    Sun, Xin
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (03) : 1548 - 1564
  • [32] Energy-efficient task offloading, load balancing, and resource allocation in mobile edge computing enabled IoT networks
    Shulei LI
    Daosen ZHAI
    Pengfei DU
    Ting HAN
    ScienceChina(InformationSciences), 2019, 62 (02) : 243 - 245
  • [33] Energy-efficient task offloading, load balancing, and resource allocation in mobile edge computing enabled IoT networks
    Li, Shulei
    Zhai, Daosen
    Du, Pengfei
    Han, Ting
    SCIENCE CHINA-INFORMATION SCIENCES, 2019, 62 (02)
  • [34] Energy-efficient task offloading, load balancing, and resource allocation in mobile edge computing enabled IoT networks
    Shulei Li
    Daosen Zhai
    Pengfei Du
    Ting Han
    Science China Information Sciences, 2019, 62
  • [35] Energy Efficient Reconfigurable Intelligent Surface Enabled Mobile Edge Computing Networks With NOMA
    Li, Zhiyang
    Chen, Ming
    Yang, Zhaohui
    Zhao, Jingwen
    Wang, Yinlu
    Shi, Jianfeng
    Huang, Chongwen
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (02) : 427 - 440
  • [36] Energy-efficient Computing Offloading Algorithm for Mobile Edge Computing Network
    Zhang X.-J.
    Wu W.-G.
    Zhang C.
    Chai Y.-X.
    Yang S.-Y.
    Wang X.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (02): : 849 - 867
  • [37] Resource allocation and device pairing for energy-efficient NOMA-enabled federated edge learning
    Hu, Youqiang
    Huang, Hejiao
    Yu, Nuo
    COMPUTER COMMUNICATIONS, 2023, 208 : 283 - 293
  • [38] Collaborative Cloud-Edge-End Task Offloading in NOMA-Enabled Mobile Edge Computing Using Deep Learning
    Du, RuiZhong
    Liu, Cui
    Gao, Yan
    Hao, PengNan
    Wang, ZiYuan
    JOURNAL OF GRID COMPUTING, 2022, 20 (02)
  • [39] Collaborative Cloud-Edge-End Task Offloading in NOMA-Enabled Mobile Edge Computing Using Deep Learning
    RuiZhong Du
    Cui Liu
    Yan Gao
    PengNan Hao
    ZiYuan Wang
    Journal of Grid Computing, 2022, 20
  • [40] Resource Allocation for Energy-Efficient MEC in NOMA-Enabled Massive IoT Networks
    Liu, Binghong
    Liu, Chenxi
    Peng, Mugen
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2021, 39 (04) : 1015 - 1027