End-to-End Optimized ROI Image Compression

被引:52
|
作者
Cai, Chunlei [1 ]
Chen, Li [1 ]
Zhang, Xiaoyun [1 ]
Gao, Zhiyong [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Image Commun & Network Engn, Dept Elect Engn, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Region of interest; lossy image compression; object segmentation; ROI coding; rate distortion optimization; convolutional neural network;
D O I
10.1109/TIP.2019.2960869
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Compressing an image with more bits automatically allocated to the region of interest (ROI) than to the background can both protect key information and reduce substantial redundancy. This paper models ROI image compression as an optimization problem of minimizing a weighted sum of the rate of the image and distortion of the ROI. The traditional framework solves this problem by cascading ROI prediction and ROI coding, through which achieving the optimized solution is impossible. To improve coding performance, we propose a novel deep-learning-based unified framework that can achieve rate distortion optimization for ROI compression. Specifically, the proposed framework includes a pair of ROI encoder and decoder convolutional neural networks and a learned entropy codec. The encoder network simultaneously generates multiscale representations that support efficient rate allocation and an implicit ROI mask that guides rate allocation. The proposed framework can automatically complete ROI image compression, and it can be optimized from data in an end-to-end manner. To effectively train the framework by back propagation, we develop a soft-to-hard ROI prediction scheme to make the entire framework differential. To improve visual quality, we propose a hierarchical distortion loss function to protect both pixel-level fidelity for ROI and structural similarity for the entire image. The proposed framework is implemented in two scenarios: salient-target and face-target ROI compression. Comparative experiments demonstrate the advantages of the proposed framework over the traditional framework, including considerably better subjective visual quality, significantly higher objective ROI compression performance and execution efficiency.
引用
收藏
页码:3442 / 3457
页数:16
相关论文
共 50 条
  • [21] End-to-End Learning-Based Image Compression: A Review
    Chen Jimin
    Lin Zehao
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (22)
  • [22] End-to-end image compression method based on perception metric
    Shuai Liu
    Yingcong Huang
    Huoxiang Yang
    Yongsheng Liang
    Wei Liu
    Signal, Image and Video Processing, 2022, 16 : 1803 - 1810
  • [23] End-to-end system consideration of the Galileo image compression system
    Cheung, K
    Tong, K
    Belongie, M
    IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 1035 - 1038
  • [24] End-to-End Learned Image Compression with Augmented Normalizing Flows
    Ho, Yung-Han
    Chan, Chih-Chun
    Peng, Wen-Hsiao
    Hang, Hsueh-Ming
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1931 - 1935
  • [25] An end-to-end spike-based image compression architecture
    Doutsi, Effrosyni
    Antonini, Marc
    Tsakalides, Panagiotis
    2020 54TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2020, : 818 - 820
  • [26] End-to-end image compression method based on perception metric
    Liu, Shuai
    Huang, Yingcong
    Yang, Huoxiang
    Liang, Yongsheng
    Liu, Wei
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (07) : 1803 - 1810
  • [27] Estimating the resize parameter in end-to-end learned image compression
    Chen, Li-Heng
    Bampis, Christos G.
    Li, Zhi
    Krasula, Lukas
    Bovik, Alan C.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2025, 135
  • [28] A Reference Resource Based End-to-End Image Compression Scheme
    Yin, Wenbin
    Fan, Xiaopeng
    Shi, Yunhui
    Zuo, Wangmeng
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING, PT I, 2018, 11164 : 534 - 544
  • [29] End-to-End Image Patch Quality Assessment for Image/Video With Compression Artifacts
    Tung Thanh Pham
    Xiem Van Hoang
    Nghia Trung Nguyen
    Duong Trieu Dinh
    Le Thanh Ha
    IEEE ACCESS, 2020, 8 : 215157 - 215172
  • [30] Compression of End-to-End Models
    Pang, Ruoming
    Sainath, Tara N.
    Prabhavalkar, Rohit
    Gupta, Suyog
    Wu, Yonghui
    Zhang, Shuyuan
    Chiu, Chung-cheng
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 27 - 31