Flame retardant vermiculite coated on polypropylene separator for lithium-ion batteries

被引:20
作者
Carter, Maria [1 ]
Parekh, Mihit H. [2 ]
Tomar, Vikas [1 ]
Dietz, J. Eric [3 ]
Pol, Vilas G. [2 ]
机构
[1] Purdue Univ, Sch Aeronaut & Astronaut, W Lafayette, IN 47907 USA
[2] Purdue Univ, Davidson Sch Chem Engn, W Lafayette, IN 47907 USA
[3] Purdue Univ, Comp & Informat Technol Dept, W Lafayette, IN 47907 USA
关键词
Lithium-ion batteries; Separator; Thermal safety; Vermiculite; Calorimetry; FIBROUS MEMBRANE; ENHANCED LITHIUM; LIFEPO4; CATHODE; BEHAVIOR;
D O I
10.1016/j.clay.2021.106111
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-ion batteries (LIBs) are being used in a variety of applications due to their desirable energy storage characteristics required for modern electronic devices. However, LIBs are prone to thermal runaway due to the flammable liquid electrolyte, decomposition of solid electrolyte interphase from anode surfaces, and melting of polypropylene (PP) separators. The separator provides a pathway for Li+ transfer and divides electrodes from electrical contact, avoiding a short circuit, a potentially catastrophic event. A separator that can endure higher temperatures may restrict a cell from causing thermal runaway. This paper demonstrates that vermiculite, a mineral stable over 1000 degrees C, could act as a separator lining in LIBs with a lithium-ion phosphate (LFP) cathode and lithium anode. Though the standard PP separator shrinks or melts above 130 degrees C, the vermiculite and binder will continue to provide electronic isolation, allowing the battery to delay a thermal runaway scenario. The battery containing the vermiculite modified separator released 1.675 kJ g(-1) less exothermic energy during the thermal runaway, as well as demonstrating a 3.38 degrees C higher separator melting temperature, indicating enhanced safety in examined LIBs.
引用
收藏
页数:8
相关论文
共 45 条
[1]   Thermal behaviour of ground vermiculite [J].
Balek, V. ;
Perez-Rodriguez, J. L. ;
Perez-Maqueda, L. A. ;
Subrt, J. ;
Poyato, J. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2007, 88 (03) :819-823
[2]  
Bayani A., 2019, Aluminum Hydroxide-Based Flame-Retardant Composite Separator for Lithium-Ion Batteries, V6, P15
[3]   Novel sandwich structured chrysotile fiber separator for advanced lithium-ion batteries [J].
Cai, Nana ;
Wang, Kun ;
Li, Neng ;
Huang, Suping ;
Xiao, Qi .
APPLIED CLAY SCIENCE, 2019, 183
[4]  
Campos A, 2009, EARTH SCI RES J, V13, P108
[5]   High performance separator coated with amino-functionalized SiO2 particles for safety enhanced lithium-ion batteries [J].
Cho, Jinhyun ;
Jung, Yun-Chae ;
Lee, Yun Sung ;
Kim, Dong-Won .
JOURNAL OF MEMBRANE SCIENCE, 2017, 535 :151-157
[6]   Modeling and Applications of Electrochemical Impedance Spectroscopy (EIS) for Lithium-ion Batteries [J].
Choi, Woosung ;
Shin, Heon-Cheol ;
Kim, Ji Man ;
Choi, Jae-Young ;
Yoon, Won-Sub .
JOURNAL OF ELECTROCHEMICAL SCIENCE AND TECHNOLOGY, 2020, 11 (01) :1-13
[7]   A rational design of separator with substantially enhanced thermal features for lithium-ion batteries by the polydopamine-ceramic composite modification of polyolefin membranes [J].
Dai, Jianhui ;
Shi, Chuan ;
Li, Chao ;
Shen, Xiu ;
Peng, Longqing ;
Wu, Dezhi ;
Sun, Daoheng ;
Zhang, Peng ;
Zhao, Jinbao .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3252-3261
[8]   Development of PVDF Membrane Nanocomposites via Various Functionalization Approaches for Environmental Applications [J].
Davenport, Douglas M. ;
Gui, Minghui ;
Ormsbee, Lindell R. ;
Bhattacharyya, Dibakar .
POLYMERS, 2016, 8 (02)
[9]   Heat-Resistant Trilayer Separators for High-Performance Lithium-Ion Batteries [J].
Feng, Chao ;
Wang, Xuchang ;
Zeng, Guangfeng ;
Chen, Dongjiang ;
Lv, Weiqiang ;
Han, Yupei ;
Jian, Xian ;
Dou, Shi Xue ;
Xiong, Jie ;
He, Weidong .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2020, 14 (01)
[10]   Thermal runaway mechanism of lithium ion battery for electric vehicles: A review [J].
Feng, Xuning ;
Ouyang, Minggao ;
Liu, Xiang ;
Lu, Languang ;
Xia, Yong ;
He, Xiangming .
ENERGY STORAGE MATERIALS, 2018, 10 :246-267