Local existence, uniqueness and lower bounds of solutions for the magnetohydrodynamics equations in Sobolev-Gevrey spaces

被引:10
|
作者
Melo, Wilberclay G. [1 ]
Rocha, Nata Firmino [2 ]
Zingano, Paulo R. [3 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Minas Gerais, Dept Matemat, BR-31270901 Belo Horizonte, MG, Brazil
[3] Univ Fed Rio Grande do Sul, Dept Matemat Pura & Aplicada, BR-91509 Porto Alegre, RS, Brazil
关键词
MHD equations; Local existence and uniqueness of solutions; Lower bounds; Sobolev-Gevrey spaces; BLOW-UP CRITERION; NAVIER-STOKES EQUATIONS; FLUID;
D O I
10.1016/j.jmaa.2019.123524
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proves the existence and uniqueness, and also establishes blow-up criteria, of solutions for the Magnetohydrodynamics equations in Sobolev-Gevrey spaces H-alpha,sigma(s) (R-3). More precisely, if it is assumed that the initial data (u(0), b(0)) belongs to H-alpha,sigma(s0)(R-3), with a > 0, sigma >= 1, s(0) > 1/2 and s(0) not equal 3/2, we demonstrate that there is a time T > 0 such that (u, b) is an element of C([0, T]; H-alpha,sigma(s)(R-3) for all s <= s(0). In addition, we show for instance that if T* < infinity is the first blow-up instant of the solution (u, b)(x, t); then, parallel to(u,b)(t)parallel to H-alpha,sigma(s)(R-3) >= C-1 parallel to(u,b)(t)parallel to 1-2(3)/3 L-2(R) exp {aC(2) parallel to(u,b)(t)parallel to-2/3 sigma -L-2(R) (T* - t) 1-/3 sigma } /(T* - t) r/3 for all t is an element of[0, T*), where s(0) > 3/2, 3/2 < s <= s(0), a > 0 and a >= 1. And also parallel to(u,b)(t)parallel to H-alpha,sigma(s)(R-3) >= a sigma 0+1/2 C(2)exp{aC(3) (T* - t) -1/3 sigma}/(T* - t) 2 where 1/2 < s(0) < 3/2, 1/2 < s <= s(0), a > 0 and sigma > 1. Here 2 sigma(0) is the integer part of 2 sigma. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] Navier-Stokes equations: local existence, uniqueness and blow-up of solutions in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rocha, Nata Firmino
    Barbosa, Ezequiel
    APPLICABLE ANALYSIS, 2021, 100 (09) : 1905 - 1924
  • [2] Large time decay for the magnetohydrodynamics equations in Sobolev-Gevrey spaces
    Guterres, Robert
    Melo, Wilberclay G.
    Nunes, Juliana
    Perusato, Cilon
    MONATSHEFTE FUR MATHEMATIK, 2020, 192 (03): : 591 - 613
  • [3] Existence, uniqueness and blow-up of solutions for the 3D Navier-Stokes equations in homogeneous Sobolev-Gevrey spaces
    Braze e Silva, P.
    Melo, W. G.
    Rocha, N. F.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [4] Existence of solutions and their behavior for the anisotropic quasi-geostrophic equation in Sobolev and Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Santos, Thyago S. R.
    Costa, Natielle dos Santos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (01)
  • [5] Asymptotic behavior of solutions for the 2D micropolar equations in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rocha, Nata F.
    Zingano, Paulo R.
    ASYMPTOTIC ANALYSIS, 2021, 123 (1-2) : 157 - 179
  • [6] Local existence results in Sobolev spaces for generalized magnetohydrodynamics equations
    Kim, Hyunseok
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (06) : 5243 - 5265
  • [7] Large time decay for the magnetohydrodynamics equations in Sobolev–Gevrey spaces
    Robert Guterres
    Wilberclay G. Melo
    Juliana Nunes
    Cilon Perusato
    Monatshefte für Mathematik, 2020, 192 : 591 - 613
  • [8] Time decay rates for the generalized MHD-α equations in Sobolev-Gevrey spaces
    Melo, Wilberclay G.
    Rosa Santos, Thyago Souza
    APPLICABLE ANALYSIS, 2022, 101 (18) : 6623 - 6644
  • [9] Exponential Growth and Properties of Solutions for a Forced System of Incompressible Navier-Stokes Equations in Sobolev-Gevrey Spaces
    Palencia, Jose Luis Diaz
    MATHEMATICS, 2025, 13 (01)
  • [10] Existence, uniqueness and blow-up of solutions for the 3D Navier–Stokes equations in homogeneous Sobolev–Gevrey spaces
    P. Braz e Silva
    W. G. Melo
    N. F. Rocha
    Computational and Applied Mathematics, 2020, 39