On amenability and co-amenability of algebraic quantum groups and their corepresentations

被引:24
作者
Bédos, E
Conti, R
Tuset, L
机构
[1] Univ Oslo, Inst Math, N-0316 Oslo, Norway
[2] Univ Erlangen Nurnberg, Math Inst, D-91054 Erlangen, Germany
[3] Oslo Univ Coll, Fac Engn, N-0254 Oslo, Norway
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2005年 / 57卷 / 01期
关键词
quantum group; amenability;
D O I
10.4153/CJM-2005-002-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce and study several notions of amenability for unitary corepresentations and *-representations of algebraic quantum groups, which may be used to characterize amenability and co-amenability for such quantum groups. As a background for this study, we investigate the associated tensor C*-categories.
引用
收藏
页码:17 / 60
页数:44
相关论文
共 29 条
[1]  
[Anonymous], 1995, J OPERATOR THEORY
[2]  
BAAJ S, 1993, ANN SCI ECOLE NORM S, V26, P425
[3]  
Banica T, 1999, J REINE ANGEW MATH, V509, P167
[4]  
BANICA T, 1999, EXPOSITION MATH, V17, P313
[5]   Amenability and co-amenability of algebraic quantum groups II [J].
Bédos, E ;
Murphy, GJ ;
Tuset, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (02) :303-340
[6]  
Bédos E, 2001, J GEOM PHYS, V40, P130, DOI 10.1016/S0393-0440(01)00024-9
[7]  
Bedos E., 2002, INT J MATH MATH SCI, V31, P577
[8]   AMENABLE UNITARY REPRESENTATIONS OF LOCALLY COMPACT-GROUPS [J].
BEKKA, MEB .
INVENTIONES MATHEMATICAE, 1990, 100 (02) :383-401
[9]   Deformations of Hopf C*-algebras [J].
Blanchard, E .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1996, 124 (01) :141-215
[10]  
Effros E. G., 1994, INT J MATH, V5, P681, DOI DOI 10.1142/s0129167x94000358